Explicit improvements for Lp-estimates related to elliptic systems

被引:0
作者
Boehnlein, Tim [1 ]
Egert, Moritz [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Schlossgartenstr 7, Darmstadt D-64289, Germany
关键词
REGULARITY; OPERATORS;
D O I
10.1112/blms.12973
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simple argument to obtain L-p-boundedness for heat semigroups associated to uniformly strongly elliptic systems on R-d by using Stein interpolation between Gaussian estimates and hypercontractivity. Our results give p explicitly in terms of ellipticity. It is optimal at the endpoint p = infinity. We also obtain L-p-estimates for the gradient of the semigroup, where p > 2 depends on ellipticity but not on dimension.
引用
收藏
页码:914 / 930
页数:17
相关论文
共 20 条
[1]  
Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
[2]  
Auscher P, 2001, LECT NOTES PURE APPL, V215, P15
[3]   Regularity theorems and heat kernel for elliptic operators [J].
Auscher, P .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :284-296
[4]  
Auscher P., 2023, BOUND VALUE PROBL, V346
[5]  
Auscher P., 1998, SQUARE ROOT PROBLEM, V249
[6]  
Auscher P, 2007, MEM AM MATH SOC, V186, pXI
[7]   Lp-bounds for the Beurling-Ahlfors transform [J].
Banuelos, Rodrigo ;
Janakiraman, Prabhu .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (07) :3603-3612
[8]  
Dong HJ, 2009, METHODS APPL ANAL, V16, P365
[9]  
Dragicevic O, 2006, J OPERAT THEOR, V56, P167
[10]  
Evans Lawrence C., 2010, Graduate Studies in Mathematics, V19, DOI 10.1090/gsm/019