A new wavelet-based estimation of conditional density via block threshold method

被引:0
作者
Shirazi, Esmaeil [1 ]
Faugeras, Olivier P. [2 ]
机构
[1] Gonbad Kavous Univ, Fac Sci, Gonbad Kavous, Iran
[2] Univ Toulouse 1 Capitole, Toulouse Sch Econ, 1 Esplanade Univ,Off T106, F-31080 Toulouse 06, France
关键词
Besov space; block threshold estimator; conditional density; non parametric estimation; wavelet methods;
D O I
10.1080/03610926.2023.2279917
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new wavelet-based estimator of the conditional density is investigated. The estimator is constructed by combining a special ratio technique and applying a non negative estimator to the density function in the denominator. We used a wavelet shrinkage technique to find an adaptive estimator for this problem. In particular, a block thresholding estimator is proposed, and we prove that it enjoys powerful mean integrated squared error properties over Besov balls. Moreover, it is shown that convergence rates for the mean integrated squared error (MISE) of the adaptive estimator are optimal under some mild assumptions. Finally, a numerical example has been considered to illustrate the performance of the estimator.
引用
收藏
页码:8155 / 8165
页数:11
相关论文
共 26 条
[1]   Transition densities for interest rate and other nonlinear diffusions [J].
Aït-Sahalia, Y .
JOURNAL OF FINANCE, 1999, 54 (04) :1361-1395
[2]   Inhomogeneous and anisotropic conditional density estimation from dependent data [J].
Akakpo, Nathalie ;
Lacour, Claire .
ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 :1618-1653
[3]  
[Anonymous], 2005, Nonlinear Time Series: Nonparametric and Parametric Methods
[4]   Adaptive pointwise estimation of conditional density function [J].
Bertin, Karine ;
Lacour, Claire ;
Rivoirard, Vincent .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02) :939-980
[5]   A Note on the Nonparametric Estimation of the Conditional Mode by Wavelet Methods [J].
Bouzebda, Salim ;
Chesneau, Christophe .
STATS, 2020, 3 (04) :475-483
[6]  
Chesneau C., 2016, Chin. J. Math, V2016, P6204874, DOI [10.1155/2016/6204874, DOI 10.1155/2016/6204874]
[7]  
Cirel'Son B. S., 1976, P 3 JAPAN USSR S PRO, V550, DOI [10.1007/BFb0077482, DOI 10.1007/BFB0077482]
[8]  
Cohen A., 1993, Applied and Computational Harmonic Analysis, V1, P54, DOI 10.1006/acha.1993.1005
[9]  
Daubechies I, 1992, CBMS-NSF Regional Conference Series in Applied Mathematics, DOI [DOI 10.1137/1.9781611970104, 10.1137/1.9781611970104]
[10]   Multinomial Probability Estimation by Wavelet Thresholding [J].
Dong, Jianping ;
Jiang, Renfang .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (09) :1486-1507