Dynamical analysis of a fractional-order nonlinear two-degree-of-freedom vehicle system by incremental harmonic balance method

被引:7
作者
Chang, Yujian [1 ,2 ]
Zhu, Yuxiao [1 ,2 ]
Li, Yongkuan [1 ,2 ]
Wang, Meiqi [3 ]
机构
[1] Shijiazhuang Tiedao Univ, Hebei Prov Collaborat Innovat Ctr Transportat Powe, Shijiazhuang, Peoples R China
[2] Shijiazhuang Tiedao Univ, Sch Elect & Elect Engn, 17 Northeast,2 Inner Ring, Shijiazhuang 050043, Peoples R China
[3] Shijiazhuang Tiedao Univ, Sch Mech Engn, Shijiazhuang, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order model; nonlinear; vehicle; incremental harmonic balance method; PRIMARY RESONANCE; DUFFING OSCILLATOR; VIBRATION; MODEL;
D O I
10.1177/14613484231210484
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
At present, there are few studies considering both nonlinear and fractional characteristics of suspension in vehicle systems. In this paper, a fractional nonlinear model of a quarter vehicle with two-degree-of-freedom (2-DOF) is innovatively proposed to describe the suspension system containing the viscoelastic material metal rubber. Given the lack of a general calculation scheme for the multi-degree-of-freedom fractional-order incremental harmonic balance method (IHBM), a general calculation scheme for the 2-DOF incremental harmonic balance method for nonlinear systems with fractional order is derived. The nonlinear dynamical properties of the presented model are acquired using this method. The accuracy of the proposed method is verified through a comparison with the power series expansion method. Afterward, the effects of the various parameters on the dynamic performance are analyzed. The vibration peak value of the fractional-order model is significantly higher than that of the integer-order model (IOM). Therefore, the suspension parameters should be designed with a margin when using IOM.
引用
收藏
页码:706 / 728
页数:23
相关论文
共 33 条
[1]   Studying the influence of external torques on the dynamical motion and the stability of a 3DOF dynamic system [J].
Abdelhfeez, S. A. ;
Amer, T. S. ;
Elbaz, Rewan F. F. ;
Bek, M. A. .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (09) :6695-6724
[2]   The stability analysis for the motion of a nonlinear damped vibrating dynamical system with three-degrees-of-freedom [J].
Amer, T. S. ;
Bek, M. A. ;
Hassan, S. S. ;
Elbendary, Sherif .
RESULTS IN PHYSICS, 2021, 28
[3]   ON THE FRACTIONAL CALCULUS MODEL OF VISCOELASTIC BEHAVIOR [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1986, 30 (01) :133-155
[4]   The asymptotic analysis for the motion of 3DOF dynamical system close to resonances [J].
Bek, M. A. ;
Amer, T. S. ;
Almahalawy, A. ;
Elameer, A. S. .
ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (04) :3539-3551
[5]  
[常宇健 Chang Yujian], 2020, [振动与冲击, Journal of Vibration and Shock], V39, P233
[6]  
Chen SH., 2007, QUANTITATIVE ANAL ME, P178
[7]   An efficient approach to solving fractional Van der Pol-Duffing jerk oscillator [J].
El-Dib, Yusry O. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (10)
[8]   Immediate solution for fractional nonlinear oscillators using the equivalent linearized method [J].
El-Dib, Yusry O. .
JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2022, 41 (04) :1411-1425
[9]   Nonlinear dynamical analysis of a time-fractional Klein-Gordon equation [J].
El-Dib, Yusry O. ;
Elgazery, Nasser S. ;
Mady, Amal A. .
PRAMANA-JOURNAL OF PHYSICS, 2021, 95 (04)
[10]   Controlling the kinematics of a spring-pendulum system using an energy harvesting device [J].
He, Chun-Hui ;
Amer, Tarek S. ;
Tian, Dan ;
Abolila, Amany F. ;
Galal, Abdallah A. .
JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2022, 41 (03) :1234-1257