Automated Brain Tumour Detection and Classification using Deep Features and Bayesian Optimised Classifiers

被引:2
|
作者
Kumar, S. Arun [1 ]
Sasikala, S. [1 ]
机构
[1] Kumaraguru Coll Technol, Dept Elect & Commun Engn, Coimbatore 641049, Tamil Nadu, India
关键词
Brain tumour; Resnet; 18; Detection; Classification; Deep learning; Transfer learning; Hyper parameter tuning;
D O I
10.2174/1573405620666230328092218
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Brain tumour detection and classification require trained radiologists for efficient diagnosis. The proposed work aims to build a Computer Aided Diagnosis (CAD) tool to automate brain tumour detection using Machine Learning (ML) and Deep Learning (DL) techniques.Materials and Methods Magnetic Resonance Image (MRI) collected from the publicly available Kaggle dataset is used for brain tumour detection and classification. Deep features extracted from the global pooling layer of Pretrained Resnet18 network are classified using 3 different ML Classifiers, such as Support vector Machine (SVM), K-Nearest Neighbour (KNN), and Decision Tree (DT). The above classifiers are further hyperparameter optimised using Bayesian Algorithm (BA) to enhance the performance. Fusion of features extracted from shallow and deep layers of the pretrained Resnet18 network followed by BA-optimised ML classifiers is further used to enhance the detection and classification performance. The confusion matrix derived from the classifier model is used to evaluate the system's performance. Evaluation metrics, such as accuracy, sensitivity, specificity, precision, F1 score, Balance Classification Rate (BCR), Mathews Correlation Coefficient (MCC) and Kappa Coefficient (Kp), are calculated.Results Maximum accuracy, sensitivity, specificity, precision, F1 score, BCR, MCC, and Kp of 99.11%, 98.99%, 99.22%, 99.09%, 99.09%, 99.10%, 98.21%, 98.21%, respectively, were obtained for detection using fusion of shallow and deep features of Resnet18 pretrained network classified by BA optimized SVM classifier. Feature fusion performs better for classification task with accuracy, sensitivity, specificity, precision, F1 score, BCR, MCC and Kp of 97.31%, 97.30%, 98.65%, 97.37%, 97.34%, 97.97%, 95.99%, 93.95%, respectively.Conclusion The proposed brain tumour detection and classification framework using deep feature extraction from Resnet 18 pretrained network in conjunction with feature fusion and optimised ML classifiers can improve the system performance. Henceforth, the proposed work can be used as an assistive tool to aid the radiologist in automated brain tumour analysis and treatment.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Optimised deep learning features for improved melanoma detection
    Majtner, Tomas
    Yildirim-Yayilgan, Sule
    Hardeberg, Jon Yngve
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (09) : 11883 - 11903
  • [22] Hybrid deep learning algorithm for brain tumour detection
    Srivastava, Jyoti
    Prakash, Jay
    Srivastava, Ashish
    IMAGING SCIENCE JOURNAL, 2022, 70 (06) : 345 - 357
  • [23] Detection and classification on MRI images of brain tumor using YOLO NAS deep learning model
    Mithun, M. S.
    Jawhar, S. Joseph
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (04)
  • [24] Automated Pterygium Detection Using Deep Neural Network
    Zamani, N. Syahira M.
    Zaki, Wan Mimi Diyana Wan
    Huddin, Aqilah Baseri
    Hussain, Aini
    Mutalib, Haliza Abdul
    Ali, Aziah
    IEEE ACCESS, 2020, 8 : 191659 - 191672
  • [25] Automated Pavement Cracks Detection and Classification Using Deep Learning
    Nafaa, Selvia
    Ashour, Karim
    Mohamed, Rana
    Essam, Hafsa
    Emad, Doaa
    Elhenawy, Mohammed
    Ashqar, Huthaifa I.
    Hassan, Abdallah A.
    Alhadidi, Taqwa I.
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [26] Brain Tumor Classification and Detection Using Hybrid Deep Tumor Network
    Amran, Gehad Abdullah
    Alsharam, Mohammed Shakeeb
    Blajam, Abdullah Omar A.
    Hasan, Ali A.
    Alfaifi, Mohammad Y.
    Amran, Mohammed H.
    Gumaei, Abdu
    Eldin, Sayed M.
    ELECTRONICS, 2022, 11 (21)
  • [27] Skin cancer diagnosis: Leveraging deep hidden features and ensemble classifiers for early detection and classification
    Akilandasowmya, G.
    Nirmaladevi, G.
    Suganthi, S. U.
    Aishwariya, A.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [28] Automated detection & classification of knee arthroplasty using deep learning
    Yi, Paul H.
    Wei, Jinchi
    Kim, Tae Kyung
    Sair, Haris, I
    Hui, Ferdinand K.
    Hager, Gregory D.
    Fritz, Jan
    Oni, Julius K.
    KNEE, 2020, 27 (02) : 535 - 542
  • [29] A novel enhanced softmax loss function for brain tumour detection using deep learning
    Maharjan, Sunil
    Alsadoon, Abeer
    Prasad, P. W. C.
    Al-Dalain, Thair
    Alsadoon, Omar Hisham
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 330
  • [30] A deep learning approach for brain tumour detection system using convolutional neural networks
    Kalaiselvi, T.
    Padmapriya, S. T.
    Sriramakrishnan, P.
    Somasundaram, K.
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2021, 11 (5-6) : 514 - 526