Energy-Efficient Spiking Segmenter for Frame and Event-Based Images

被引:9
作者
Zhang, Hong [1 ]
Fan, Xiongfei [1 ]
Zhang, Yu [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Key Lab Collaborat Sensing & Autonomous Unmanned S, Hangzhou 310027, Peoples R China
关键词
neuromophic computing; spiking neural network; semantic segmentation; spiking context guided network; frame and event-based images; NEURAL-NETWORKS;
D O I
10.3390/biomimetics8040356
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Semantic segmentation predicts dense pixel-wise semantic labels, which is crucial for autonomous environment perception systems. For applications on mobile devices, current research focuses on energy-efficient segmenters for both frame and event-based cameras. However, there is currently no artificial neural network (ANN) that can perform efficient segmentation on both types of images. This paper introduces spiking neural network (SNN, a bionic model that is energy-efficient when implemented on neuromorphic hardware) and develops a Spiking Context Guided Network (Spiking CGNet) with substantially lower energy consumption and comparable performance for both frame and event-based images. First, this paper proposes a spiking context guided block that can extract local features and context information with spike computations. On this basis, the directly-trained SCGNet-S and SCGNet-L are established for both frame and event-based images. Our method is verified on the frame-based dataset Cityscapes and the event-based dataset DDD17. On the Cityscapes dataset, SCGNet-S achieves comparable results to ANN CGNet with 4.85 x energy efficiency. On the DDD17 dataset, Spiking CGNet outperforms other spiking segmenters by a large margin.
引用
收藏
页数:18
相关论文
共 67 条
[31]   Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures [J].
Lee, Chankyu ;
Sarwar, Syed Shakib ;
Panda, Priyadarshini ;
Srinivasan, Gopalakrishnan ;
Roy, Kaushik .
FRONTIERS IN NEUROSCIENCE, 2020, 14
[32]  
Li Y., 2022, arXiv
[33]   RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation [J].
Lin, Guosheng ;
Milan, Anton ;
Shen, Chunhua ;
Reid, Ian .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5168-5177
[34]   Swin Transformer: Hierarchical Vision Transformer using Shifted Windows [J].
Liu, Ze ;
Lin, Yutong ;
Cao, Yue ;
Hu, Han ;
Wei, Yixuan ;
Zhang, Zheng ;
Lin, Stephen ;
Guo, Baining .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9992-10002
[35]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[36]   SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object Tracking [J].
Luo, Yihao ;
Xu, Min ;
Yuan, Caihong ;
Cao, Xiang ;
Zhang, Liangqi ;
Xu, Yan ;
Wang, Tianjiang ;
Feng, Qi .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2021, PT V, 2021, 12895 :182-194
[37]   ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation [J].
Mehta, Sachin ;
Rastegari, Mohammad ;
Caspi, Anat ;
Shapiro, Linda ;
Hajishirzi, Hannaneh .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :561-580
[38]   A million spiking-neuron integrated circuit with a scalable communication network and interface [J].
Merolla, Paul A. ;
Arthur, John V. ;
Alvarez-Icaza, Rodrigo ;
Cassidy, Andrew S. ;
Sawada, Jun ;
Akopyan, Filipp ;
Jackson, Bryan L. ;
Imam, Nabil ;
Guo, Chen ;
Nakamura, Yutaka ;
Brezzo, Bernard ;
Vo, Ivan ;
Esser, Steven K. ;
Appuswamy, Rathinakumar ;
Taba, Brian ;
Amir, Arnon ;
Flickner, Myron D. ;
Risk, William P. ;
Manohar, Rajit ;
Modha, Dharmendra S. .
SCIENCE, 2014, 345 (6197) :668-673
[39]   RetinaNet Object Detector Based on Analog-to-Spiking Neural Network Conversion [J].
Miquel, Joaquin Royo ;
Tolu, Silvia ;
Scholler, Frederik E. T. ;
Galeazzi, Roberto .
2021 8TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI 2021), 2021, :201-205
[40]   Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-based optimization to spiking neural networks [J].
Neftci, Emre O. ;
Mostafa, Hesham ;
Zenke, Friedemann .
IEEE SIGNAL PROCESSING MAGAZINE, 2019, 36 (06) :51-63