Energy-Efficient Spiking Segmenter for Frame and Event-Based Images

被引:9
作者
Zhang, Hong [1 ]
Fan, Xiongfei [1 ]
Zhang, Yu [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Key Lab Collaborat Sensing & Autonomous Unmanned S, Hangzhou 310027, Peoples R China
关键词
neuromophic computing; spiking neural network; semantic segmentation; spiking context guided network; frame and event-based images; NEURAL-NETWORKS;
D O I
10.3390/biomimetics8040356
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Semantic segmentation predicts dense pixel-wise semantic labels, which is crucial for autonomous environment perception systems. For applications on mobile devices, current research focuses on energy-efficient segmenters for both frame and event-based cameras. However, there is currently no artificial neural network (ANN) that can perform efficient segmentation on both types of images. This paper introduces spiking neural network (SNN, a bionic model that is energy-efficient when implemented on neuromorphic hardware) and develops a Spiking Context Guided Network (Spiking CGNet) with substantially lower energy consumption and comparable performance for both frame and event-based images. First, this paper proposes a spiking context guided block that can extract local features and context information with spike computations. On this basis, the directly-trained SCGNet-S and SCGNet-L are established for both frame and event-based images. Our method is verified on the frame-based dataset Cityscapes and the event-based dataset DDD17. On the Cityscapes dataset, SCGNet-S achieves comparable results to ANN CGNet with 4.85 x energy efficiency. On the DDD17 dataset, Spiking CGNet outperforms other spiking segmenters by a large margin.
引用
收藏
页数:18
相关论文
共 67 条
[1]   EV-SegNet: Semantic Segmentation for Event-based Cameras [J].
Alonso, Inigo ;
Murillo, Ana C. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, :1624-1633
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]  
Binas J., 2017, arXiv
[4]  
Bu T., 2022, arXiv, DOI 10.48550/arXiv.2202.01440
[5]   A Fully Spiking Hybrid Neural Network for Energy-Efficient Object Detection [J].
Chakraborty, Biswadeep ;
She, Xueyuan ;
Mukhopadhyay, Saibal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :9014-9029
[6]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[7]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[8]   Masked-attention Mask Transformer for Universal Image Segmentation [J].
Cheng, Bowen ;
Misra, Ishan ;
Schwing, Alexander G. ;
Kirillov, Alexander ;
Girdhar, Rohit .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1280-1289
[9]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[10]  
Cordone L., 2022, arXiv