Artificial Intelligence in Chronic Urticaria: Unsupervised Versus Supervised Machine Learning

被引:0
|
作者
Pathania, Y. S. [1 ]
机构
[1] All India Inst Med Sci, Dept Dermatol Venereol & Leprol, Rajkot, Gujarat, India
来源
ACTAS DERMO-SIFILIOGRAFICAS | 2023年 / 114卷 / 07期
关键词
D O I
10.1016/j.ad.2022.06.035
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
引用
收藏
页码:T659 / T659
页数:1
相关论文
共 50 条
  • [41] Unsupervised and supervised machine learning for total scattering and PDF analyses
    Billinge, S.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E244 - E244
  • [42] Supervised and Unsupervised Machine Learning Approaches for Bridge Damage Prediction
    Tamura, S.
    Zhang, B.
    Wang, Y.
    Chen, F.
    Nguyen, K.
    STRUCTURAL HEALTH MONITORING 2013, VOLS 1 AND 2, 2013, : 182 - 189
  • [43] QUALES: Machine Translation Quality Estimation via Supervised and Unsupervised Machine Learning
    Etchegoyhen, Thierry
    Martinez Garcia, Eva
    Azpeitia, Andoni
    Alegria, Inaki
    Labaka, Gorka
    Otegi, Arantza
    Sarasola, Kepa
    Cortes, Itziar
    Jauregi, Amaia
    Ellakuria, Igor
    Calonge, Eusebi
    Martin, Maite
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2018, (61): : 143 - 146
  • [44] Supervised committee machine with artificial intelligence for prediction of fluoride concentration
    Nadiri, Ata Allah
    Fijani, Elham
    Tsai, Frank T. -C.
    Moghaddam, Asghar Asghari
    JOURNAL OF HYDROINFORMATICS, 2013, 15 (04) : 1474 - 1490
  • [45] Combining supervised and unsupervised machine learning algorithms to predict the learners' learning styles
    El Aissaoui, Ouafae
    El Alami El Madani, Yasser
    Oughdir, Lahcen
    El Allioui, Youssouf
    SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS2018), 2019, 148 : 87 - 96
  • [46] Mapping Aquifer Vulnerability Indices Using Artificial Intelligence-running Multiple Frameworks (AIMF) with Supervised and Unsupervised Learning
    Nadiri, Ata Allah
    Gharekhani, Maryam
    Khatibi, Rahman
    WATER RESOURCES MANAGEMENT, 2018, 32 (09) : 3023 - 3040
  • [47] Mapping Aquifer Vulnerability Indices Using Artificial Intelligence-running Multiple Frameworks (AIMF) with Supervised and Unsupervised Learning
    Ata Allah Nadiri
    Maryam Gharekhani
    Rahman Khatibi
    Water Resources Management, 2018, 32 : 3023 - 3040
  • [48] Supervised Machine Learning for Predicting Length of Stay After Lumbar Arthrodesis: A Comprehensive Artificial Intelligence Approach
    Etzel, Christine M.
    Veeramani, Ashwin
    Zhang, Andrew S.
    McDonald, Christopher L.
    DiSilvestro, Kevin J.
    Cohen, Eric M.
    Daniels, Alan H.
    JOURNAL OF THE AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS, 2022, 30 (03) : 125 - 132
  • [49] Artificial intelligence in medicine: The rise of machine learning
    Colalillo, James M.
    Smith, Joshua
    EMERGENCY MEDICINE AUSTRALASIA, 2024, 36 (04) : 628 - 631
  • [50] Introduction to Artificial Intelligence and Machine Learning in Nephrology
    Nadkarni, Girish N. N.
    CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2023, 18 (03): : 392 - 393