Artificial Intelligence-based Module Type Package-compatible Smart Sensors in the Process Industry

被引:3
作者
Neuendorf, Laura M. [1 ]
Khaydarov, Valentin [2 ]
Schlander, Christiane [3 ]
Kock, Tobias [2 ]
Fischer, Joshua [3 ]
Urbas, Leon [2 ]
Kockmann, Norbert [1 ]
机构
[1] TU Dortmund Univ, Dept Biochem & Chem Engn, Lab Equipment Design, Emil Figge Str 68, D-44227 Dortmund, Germany
[2] TU Dresden Univ, Proc Order Lab, Helmholtzstr 16, D-01069 Dresden, Germany
[3] Merck Elect KGaA EL OTE, Frankfurter Str 250, D-64293 Darmstadt, Germany
关键词
Artificial intelligence; Complex data streams; Computer vision; Image processing; Modular automation; Module type package; EXTRACTION COLUMNS;
D O I
10.1002/cite.202300047
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Image analysis presents a set of powerful methods to receive additional information about multiphase processes. It enables the development of advanced applications for process monitoring and optimization or, so-called, soft sensors. However, the integration of advanced smart sensor systems based on image analysis into the process control system presents a complex task. To address this challenge, a modular automation concept offers a standardized interface to integrate modules. This paper presents an integration profile as a service specification that allows a plug-and-measure integration of smart visual sensors into modular plants. To verify the concept, we applied it to three different use cases. At the end, we discuss open challenges in the integration of complex analysis systems with multidimensional data streams into modular plants.
引用
收藏
页码:1546 / 1554
页数:9
相关论文
共 30 条
[1]   Active Learning Application for Recognizing Steps in Chemical Batch Production [J].
Ahmad, Asif ;
Song, Chen ;
Tan, Ruomu ;
Gaertler, Marco ;
Kloepper, Benjamin .
2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
[2]  
[Anonymous], 2019, AUTOMATISIERUNGSTECH
[3]  
[Anonymous], 2020, VERFAHRENSTECHNISCHE
[4]  
[Anonymous], 2015, MODULBASIERTE PRODUK
[5]  
[Anonymous], 2020, AUTOMATISIERUNGSTECH
[6]  
Bernshausen J., 2019, Atp Mag, V61, P56
[7]   Upcoming domains for the MTP and an evaluation of its usability for electrolysis [J].
Bittorf, Lukas ;
Beisswenger, Lucien ;
Erdmann, Daniel ;
Lorenz, Julius ;
Klose, Anselm ;
Lange, Hannes ;
Urbas, Leon ;
Markaj, Artan ;
Fay, Alexander .
2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
[8]   State-based control of process services within modular process plants [J].
Bloch, Henry ;
Hensel, Stephan ;
Hoernicke, Mario ;
Stark, Katharina ;
Menschner , Anna ;
Fay, Alexander ;
Urbas, Leon ;
Knohl, Torsten ;
Bernshausen, Jens .
51ST CIRP CONFERENCE ON MANUFACTURING SYSTEMS, 2018, 72 :1088-1093
[9]   Investigation of a Model-Based Deep Reinforcement Learning Controller Applied to an Air Separation Unit in a Production Environment [J].
Blum, Nicolas ;
Krespach, Valentin ;
Zapp, Gerhard ;
Oehse, Christian ;
Rehfeldt, Sebastian ;
Klein, Harald .
CHEMIE INGENIEUR TECHNIK, 2021, 93 (12) :1937-1948
[10]   Towards artificial intelligence at scale in the chemical industry [J].
Chiang, Leo H. ;
Braun, Birgit ;
Wang, Zhenyu ;
Castillo, Ivan .
AICHE JOURNAL, 2022, 68 (06)