FedAcc and FedAccSize: Aggregation Methods for Federated Learning Applications

被引:2
作者
Bejenar, Iuliana [1 ]
Ferariu, Lavinia [1 ]
Pascal, Carlos [1 ]
Caruntu, Constantin F. [1 ]
机构
[1] Gheorghe Asachi Tech Univ Iasi, Dept Automat Control & Appl Informat, Iasi, Romania
来源
2023 31ST MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, MED | 2023年
关键词
federated learning; federated average; non-IID data; collaboration;
D O I
10.1109/MED59994.2023.10185810
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the ability of the federated learning concept to create a collaboration between multiple devices using a shared global model, while still keeping data privacy to meet the General Data Protection Regulation (GDPR). In real-world application scenarios, this concept faces problems related to the defense of the global model from possible attacks and the compatibility with non-independent and identically distributed data (non-IID). This paper presents two aggregation algorithms compatible with non-IID data, which use a refined aggregation of the local model, based on their accuracy. Thus, the proposed algorithms can refine the confidence in each client, eliminate intruders and allow a safe aggregation of the global model. Testing scenarios performed for IID and non-IID data illustrate that the proposed algorithms are able to provide faster training and improved robustness against intruders, w.r.t. the well-known federated average algorithm.
引用
收藏
页码:593 / 598
页数:6
相关论文
共 16 条
[1]  
Bagdasaryan E, 2020, PR MACH LEARN RES, V108, P2938
[2]  
McMahan HB, 2018, Arxiv, DOI arXiv:1710.06963
[3]  
Brendan McMahan H., 2016, ABS160205629 CORR
[4]  
Hard A, 2019, Arxiv, DOI arXiv:1811.03604
[5]   Federated Learning in Smart City Sensing: Challenges and Opportunities [J].
Jiang, Ji Chu ;
Kantarci, Burak ;
Oktug, Sema ;
Soyata, Tolga .
SENSORS, 2020, 20 (21) :1-29
[6]   Advances and Open Problems in Federated Learning [J].
Kairouz, Peter ;
McMahan, H. Brendan ;
Avent, Brendan ;
Bellet, Aurelien ;
Bennis, Mehdi ;
Bhagoji, Arjun Nitin ;
Bonawitz, Kallista ;
Charles, Zachary ;
Cormode, Graham ;
Cummings, Rachel ;
D'Oliveira, Rafael G. L. ;
Eichner, Hubert ;
El Rouayheb, Salim ;
Evans, David ;
Gardner, Josh ;
Garrett, Zachary ;
Gascon, Adria ;
Ghazi, Badih ;
Gibbons, Phillip B. ;
Gruteser, Marco ;
Harchaoui, Zaid ;
He, Chaoyang ;
He, Lie ;
Huo, Zhouyuan ;
Hutchinson, Ben ;
Hsu, Justin ;
Jaggi, Martin ;
Javidi, Tara ;
Joshi, Gauri ;
Khodak, Mikhail ;
Konecny, Jakub ;
Korolova, Aleksandra ;
Koushanfar, Farinaz ;
Koyejo, Sanmi ;
Lepoint, Tancrede ;
Liu, Yang ;
Mittal, Prateek ;
Mohri, Mehryar ;
Nock, Richard ;
Ozgur, Ayfer ;
Pagh, Rasmus ;
Qi, Hang ;
Ramage, Daniel ;
Raskar, Ramesh ;
Raykova, Mariana ;
Song, Dawn ;
Song, Weikang ;
Stich, Sebastian U. ;
Sun, Ziteng ;
Suresh, Ananda Theertha .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2) :1-210
[7]  
Li T., 2020, PROC MACH LEARN SYST, V2, P429, DOI DOI 10.48550/ARXIV.1812.06127
[8]  
Liu BY, 2023, Arxiv, DOI arXiv:2301.01299
[9]  
McMahan HB, 2017, PR MACH LEARN RES, V54, P1273
[10]   FedProc: Prototypical contrastive federated learning on non-IID data [J].
Mu, Xutong ;
Shen, Yulong ;
Cheng, Ke ;
Geng, Xueli ;
Fu, Jiaxuan ;
Zhang, Tao ;
Zhang, Zhiwei .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 143 :93-104