Blow-up of solutions for nonlinear wave equations on locally finite graphs

被引:1
作者
Hong, Desheng [1 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 08期
基金
美国国家科学基金会;
关键词
nonlinear wave equation; blow up; locally finite graph;
D O I
10.3934/math.2023922
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a local finite connected weighted graph, n be a finite subset of V satisfying n degrees # 0. In this paper, we study the nonexistence of the nonlinear wave equation a2t u = Delta u + f(u) on G. Under the appropriate conditions of initial values and nonlinear term, we prove that the solution for nonlinear wave equation blows up in a finite time. Furthermore, a numerical simulation is given to verify our results.
引用
收藏
页码:18163 / 18173
页数:11
相关论文
共 24 条
[1]   Global nonexistence for a semilinear wave equation with nonlinear boundary dissipation [J].
Feng, Hongyinping ;
Li, Shengjia .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (01) :255-264
[2]   Wave equations for graphs and the edge-based Laplacian [J].
Friedman, J ;
Tillich, JP .
PACIFIC JOURNAL OF MATHEMATICS, 2004, 216 (02) :229-266
[3]   Global solutions and finite time blow up for damped semilinear wave equations [J].
Gazzola, F ;
Squassina, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (02) :185-207
[4]   Existence of positive solutions to some nonlinear equations on locally finite graphs [J].
Grigor'yan, Alexander ;
Lin Yong ;
Yang YunYan .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (07) :1311-1324
[5]   Yamabe type equations on graphs [J].
Grigor'yan, Alexander ;
Lin, Yong ;
Yang, Yunyan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) :4924-4943
[6]   Kazdan-Warner equation on graph [J].
Grigor'yan, Alexander ;
Lin, Yong ;
Yang, Yunyan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
[7]  
Grigoryan A., 2018, INTRO ANAL GRAPHS, V71
[8]  
Han FW, 2023, Arxiv, DOI [arXiv:2009.12793, 10.48550/arXiv.2009.12793, DOI 10.48550/ARXIV.2009.12793]
[9]   Existence and convergence of solutions for nonlinear biharmonic equations on graphs [J].
Han, Xiaoli ;
Shao, Mengqiu ;
Zhao, Liang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (07) :3936-3961
[10]   Existence of Solutions to Mean Field Equations on Graphs [J].
Huang, An ;
Lin, Yong ;
Yau, Shing-Tung .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (01) :613-621