Existence of nontrivial solitary wave for a generalized Kadomtsev-Petviashvili equation with the potential

被引:0
作者
Ji, Chao [1 ]
Jiang, Rong [1 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Solitary wave; generalized Kadomtsev-Petviashvili equation; variational methods; PERIODIC-WAVES; WATER;
D O I
10.1080/17476933.2023.2213166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by using the variational methods, we consider the existence of nontrivial solitary wave for a generalized Kadomtsev-Petviashvili equation with a constant potential and a periodic potential in $ \mathbb {R}<^>{2} $ R2, respectively. In our problem, the nonlinear term f is only continuous, which allows to consider larger classes of nonlinearities than usually assumed.
引用
收藏
页码:1352 / 1364
页数:13
相关论文
共 27 条
[1]  
Ablowitz MJ., 1991, Solitons, Nonlinear Evolution Equation and Inverse Scattering, DOI 10.1017/CBO9780511623998
[2]   Solitary waves for a class of generalized Kadomtsev-Petviashvili equation in RN with positive and zero mass [J].
Alves, Claudianor O. ;
Miyagaki, Olimpio H. ;
Pomponio, Alessio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (01) :523-535
[3]  
Alves CO., 2022, ARXIV
[4]  
Besov O. V, 1978, INTEGRAL REPRESENTAT, VI
[5]  
BOURGAIN J, 1993, GEOM FUNCT ANAL, V3
[6]   Solitary waves of generalized Kadomtsev-Petviashvili equations [J].
deBouard, A ;
Saut, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :211-236
[7]  
DEBOUARD A, 1995, CR ACAD SCI I-MATH, V320, P315
[8]   THE CAUCHY-PROBLEM FOR THE KADOMTSEV-PETVIASHVILI EQUATION [J].
FAMINSKII, AV .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (01) :203-204
[9]   Multiple solitary waves for a generalized Kadomtsev-Petviashvili with a [J].
Figueiredo, Giovany ;
Montenegro, Marcelo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 308 :40-56
[10]   Fully localised solitary-wave solutions of the three-dimensional gravity-capillary water-wave problem [J].
Groves, M. D. ;
Sun, S. -M. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 188 (01) :1-91