S-FP-Projective Modules and Dimensions

被引:0
作者
Assaad, Refat Abdelmawla Khaled [1 ]
Zhang, Xlaolei [2 ]
Kim, Hwankoo [3 ]
机构
[1] Univ Moulay Ismail Meknes, Fac Sci, Dept Math, Box 11201, Zitoune, Morocco
[2] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Peoples R China
[3] Hoseo Univ, Div Comp Engn, Asan 31499, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
RINGS;
D O I
10.1155/2023/7151101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring and let S be a multiplicative subset of R. An R-module M is said to be a u-S-absolutely pure module if Ext(R)(1)N,M is u-S-torsion for any finitely presented R-module N. This paper introduces and studies the notion of S-FP-projective modules, which extends the classical notion of FP-projective modules. An R-module M is called an S-FP-projective module if ExtR1M,N=0 for any u-S-absolutely pure R-module N. We also introduce the S-FP-projective dimension of a module and the global S-FP-projective dimension of a ring. Then, the relationship between the S-FP-projective dimension and other homological dimensions is discussed.
引用
收藏
页数:10
相关论文
共 14 条
[1]  
Assaad R. A. K., 2022, ALGEBRA RELATED TOPI, P47
[2]  
Fuchs L, 2015, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-3-319-19422-6
[3]  
GLAZ S, 1989, LECT NOTES MATH, V1371, P1
[4]   ABSOLUTELY PURE MODULES [J].
MADDOX, BH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 18 (01) :155-&
[5]   FP-projective dimensions [J].
Mao, LX ;
Ding, NQ .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (04) :1153-1170
[6]   ABSOLUTELY PURE MODULES [J].
MEGIBBEN, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 26 (04) :561-&
[7]   Rings in which every ideal is pure-projective or FP-projective [J].
Moradzadeh-Dehkordi, A. ;
Shojaee, S. H. .
JOURNAL OF ALGEBRA, 2017, 478 :419-436
[8]  
Rotman JJ, 2009, UNIVERSITEXT, P1, DOI 10.1007/978-0-387-68324-9_1
[9]   COHERENT RINGS AND FP-INJECTIVE MODULES [J].
STENSTRO.B .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1970, 2 (06) :323-&
[10]  
Wang F, 2016, ALGEBRA APPL, V22, P1, DOI 10.1007/978-981-10-3337-7