A priori estimates for free boundary problem of 3D incompressible inviscid rotating Boussinesq equations

被引:1
作者
Hao, Chengchun [1 ,2 ]
Zhang, Wei [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 02期
关键词
Free boundary problem; Rotating Boussinesq equations; Rotating MHD; a priori estimates; WATER-WAVE PROBLEM; BLOW-UP CRITERION; WELL-POSEDNESS; FREE-SURFACE; EULER EQUATIONS; LOCAL EXISTENCE; SOBOLEV SPACES; MOTION; LIQUID; REGULARITY;
D O I
10.1007/s00033-023-01974-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the three-dimensional rotating Boussinesq equations (the "primitive" equations of geophysical fluid flows). Inspired by Christodoulou and Lindblad (Pure Appl Math 53:1536-1602, 2000), we establish a priori estimates of Sobolev norms for free boundary problem of inviscid rotating Boussinesq equations under the Taylor-type sign condition on the initial free boundary. Using the same method, we can also obtain a priori estimates for the incompressible inviscid rotating MHD system with damping.
引用
收藏
页数:21
相关论文
共 26 条
[1]   On the global well-posedness for Boussinesq system [J].
Abidi, H. ;
Hmidi, T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :199-220
[2]   On the regularity of three-dimensional rotating Euler-Boussinesq equations [J].
Babin, A ;
Mahalov, A ;
Nicolaenko, B .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (07) :1089-1121
[3]   Local existence and blow-up criterion for the Boussinesq equations [J].
Chae, D ;
Nam, HS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :935-946
[4]  
Charve F., 2008, Ann. Fac. Sci. Toulouse Math, V17, P221, DOI [10.5802/afst.1182, DOI 10.5802/AFST.1182]
[5]   Asymptotics and Lower Bound for the Lifespan of Solutions to the Primitive Equations [J].
Charve, Frederic .
ACTA APPLICANDAE MATHEMATICAE, 2018, 158 (01) :11-47
[6]  
Christodoulou D, 2000, COMMUN PUR APPL MATH, V53, P1536, DOI 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.3.CO
[7]  
2-H
[8]   Well-posedness of the free-surface incompressible Euler equations with or without surface tension [J].
Coutand, Daniel ;
Shkoller, Steve .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (03) :829-930
[9]   Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces [J].
Danchin, Raphael ;
Paicu, Marius .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (10-12) :1444-1460
[10]  
Denisova I. V., 2011, Zap. Nauchn. Sem. POMI, V397, P20, DOI [10.1007/s10958-012-0951-8, DOI 10.1007/S10958-012-0951-8]