Group Tracking for Video Monitoring Systems: A Spatio-Temporal Query Processing Approach

被引:0
作者
Yoon, Hyunsik [1 ]
Choi, Dalsu [1 ]
Chung, Yon Dohn [1 ]
机构
[1] Korea Univ, Dept Comp Sci & Engn, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Spatiotemporal phenomena; Data processing; Query processing; Spatial databases; Video coding; Spatio-temporal query processing; spatial data management; spatial databases; video query processing; video monitoring systems;
D O I
10.1109/ACCESS.2023.3249190
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, many video monitoring systems utilize deep learning technologies to recognize locations and trajectories of people in video data. In video monitoring systems, a fast discovery of human groups is an important task for several applications, for example, crime surveillance, contact tracing, and customer behavior analysis. To tackle the demand, we propose a group tracking method. First, we propose a spatial proximity definition and define a novel query type, a group tracking query that considers characteristics of video data. A group tracking query retrieves the groups that travel for more than a certain amount of video frame within a certain distance. We propose an efficient query processing method that exploits the spatio-temporal characteristics of groups. Through extensive experiments using real-world datasets, we verify the efficiency and effectiveness of our query definition and query processing method.
引用
收藏
页码:19969 / 19987
页数:19
相关论文
共 28 条
[1]  
[Anonymous], CDC CLOSE CONTACT
[2]   Towards an integrated approach to crowd analysis and crowd synthesis: A case study and first results [J].
Bandini, Stefania ;
Gorrini, Andrea ;
Vizzari, Giuseppe .
PATTERN RECOGNITION LETTERS, 2014, 44 :16-29
[3]   Recent trends in crowd analysis: A review [J].
Bendali-Braham, Mounir ;
Weber, Jonathan ;
Forestier, Germain ;
Idoumghar, Lhassane ;
Muller, Pierre-Alain .
MACHINE LEARNING WITH APPLICATIONS, 2021, 4
[4]   Realtime Multilevel Crowd Tracking using Reciprocal Velocity Obstacles [J].
Bera, Aniket ;
Manocha, Dinesh .
2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, :4164-4169
[5]  
BriefCam, US
[6]  
Chen ML, 2017, INT CONF ACOUST SPEE, P1378, DOI 10.1109/ICASSP.2017.7952382
[7]   Evaluating Temporal Queries Over Video Feeds [J].
Chen, Yueting ;
Yu, Xiaohui ;
Koudas, Nick ;
Yu, Ziqiang .
SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, :287-299
[8]  
Dendorfer Patrick, 2020, arXiv, DOI DOI 10.48550/ARXIV.2003.09003
[9]  
Fremont V., 2002, INT C ARTIFICIAL REA, P93
[10]  
Ge W., 2009, Applications of Computer Vision (WACV), 2009 Workshop on, P1