Deep autoregressive generative models capture the intrinsics embedded in T-cell receptor repertoires

被引:2
作者
Jiang, Yuepeng [2 ]
Li, Shuai Cheng [1 ,2 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
关键词
T-cell receptor repertoires; deep neural networks; probabilistic inference; immunoinformatics; SPECIFICITY; ANTIGEN;
D O I
10.1093/bib/bbad038
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
T-cell receptors (TCRs) play an essential role in the adaptive immune system. Probabilistic models for TCR repertoires can help decipher the underlying complex sequence patterns and provide novel insights into understanding the adaptive immune system. In this work, we develop TCRpeg, a deep autoregressive generative model to unravel the sequence patterns of TCR repertoires. TCRpeg largely outperforms state-of-the-art methods in estimating the probability distribution of a TCR repertoire, boosting the average accuracy from 0.672 to 0.906 measured by the Pearson correlation coefficient. Furthermore, with promising performance in probability inference, TCRpeg improves on a range of TCR-related tasks: profiling TCR repertoire probabilistically, classifying antigen-specific TCRs, validating previously discovered TCR motifs, generating novel TCRs and augmenting TCR data. Our results and analysis highlight the flexibility and capacity of TCRpeg to extract TCR sequence information, providing a novel approach for deciphering complex immunogenomic repertoires.
引用
收藏
页数:11
相关论文
共 57 条
[1]  
Antoniou A., 2017, ARXIV
[2]   Solving the protein sequence metric problem [J].
Atchley, WR ;
Zhao, JP ;
Fernandes, AD ;
Drüke, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (18) :6395-6400
[3]  
Balasiddaiah A, 2017, J VIROL, V91, DOI [10.1128/JVI.00010-17, 10.1128/jvi.00010-17]
[4]   De novo prediction of cancer-associated T cell receptors for noninvasive cancer detection [J].
Beshnova, Daria ;
Ye, Jianfeng ;
Onabolu, Oreoluwa ;
Moon, Benjamin ;
Zheng, Wenxin ;
Fu, Yang-Xin ;
Brugarolas, James ;
Lea, Jayanthi ;
Li, Bo .
SCIENCE TRANSLATIONAL MEDICINE, 2020, 12 (557)
[5]   Composition and function of T-cell receptor and B-cell receptor complexes an precursor lymphocytes [J].
Borst, J ;
Jacobs, H ;
Brouns, G .
CURRENT OPINION IN IMMUNOLOGY, 1996, 8 (02) :181-190
[6]  
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
[7]   Single T Cell Sequencing Demonstrates the Functional Role αβ TCR Pairing in Cell Lineage and Antigen Specificity [J].
Carter, Jason A. ;
Preall, Jonathan B. ;
Grigaityte, Kristina ;
Goldfless, Stephen J. ;
Jeffery, Eric ;
Briggs, Adrian W. ;
Vigneault, Francois ;
Atwal, Gurinder S. .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[8]   TCRMatch: Predicting T-Cell Receptor Specificity Based on Sequence Similarity to Previously Characterized Receptors [J].
Chronister, William D. ;
Crinklaw, Austin ;
Mahajan, Swapnil ;
Vita, Randi ;
Kosaloglu-Yalcin, Zeynep ;
Yan, Zhen ;
Greenbaum, Jason A. ;
Jessen, Leon E. ;
Nielsen, Morten ;
Christley, Scott ;
Cowell, Lindsay G. ;
Sette, Alessandro ;
Peters, Bjoern .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[9]  
Chung J., 2014, NEURAL INFORM PROCES
[10]   Quantifiable predictive features define epitope-specific T cell receptor repertoires [J].
Dash, Pradyot ;
Fiore-Gartland, Andrew J. ;
Hertz, Tomer ;
Wang, George C. ;
Sharma, Shalini ;
Souquette, Aisha ;
Crawford, Jeremy Chase ;
Clemens, E. Bridie ;
Nguyen, Thi H. O. ;
Kedzierska, Katherine ;
La Gruta, Nicole L. ;
Bradley, Philip ;
Thomas, Paul G. .
NATURE, 2017, 547 (7661) :89-+