Numerical Investigation on Effective Elastic Modulus of Multifractal Porous Materials

被引:2
作者
Xi, Yanan [1 ]
Wang, Lijie [2 ]
Gao, Yun [3 ]
Lei, Dong [1 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Nanjing 211100, Peoples R China
[2] China Three Gorges Construct Engn Corp, Chengdu 610041, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Human Settlements & Civil Engn, Xian 710049, Peoples R China
关键词
numerical investigation; multifractal porous materials; elastic modulus; structural heterogeneity; finite element method; INFINITELY DIVISIBLE CASCADES; WAVELET-BASED METHOD; CEMENT PASTE; EFFECTIVE PERMEABILITY; IMAGE-ANALYSIS; YOUNG MODULUS; PORE NETWORK; MODEL; POROSITY; MICROSTRUCTURE;
D O I
10.3390/fractalfract7010003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The design of a novel material necessitates a fundamental understanding of its structure-property relation. Inorganic porous materials (media) such as natural soil and rock, and artificial ceramic and cement, exhibit multifractal characteristics in view of their structural heterogeneity. This paper presents a numerical investigation of the effective elastic modulus of multifractal porous materials. Two types of deterministic and stochastic cascading algorithms are employed to synthesize the multifractal fields, and then a mathematical formula is proposed to perform the conversion from the intensity of a multifractal field to the local elastic modulus of a multifractal porous material. Furthermore, a finite element method is used to achieve the homogenization of the local elastic modulus. Special attention is paid to the dependence of the effective elastic modulus on the structural heterogeneity of multifractal porous materials.
引用
收藏
页数:19
相关论文
共 56 条
[12]   Structure-property-function relationships of natural and engineered wood [J].
Chen, Chaoji ;
Kuang, Yudi ;
Zhu, Shuze ;
Burgert, Ingo ;
Keplinger, Tobias ;
Gong, Amy ;
Li, Teng ;
Berglund, Lars ;
Eichhorn, Stephen J. ;
Hu, Liangbing .
NATURE REVIEWS MATERIALS, 2020, 5 (09) :642-666
[13]   Microstructural characteristics and elastic modulus of porous solids [J].
Chen, Zhangwei ;
Wang, Xin ;
Giuliani, Finn ;
Atkinson, Alan .
ACTA MATERIALIA, 2015, 89 :268-277
[14]   Generalized binomial multiplicative cascade processes and asymmetrical multifractal distributions [J].
Cheng, Q. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2014, 21 (02) :477-487
[15]   Multifractal analysis of ceramic pottery SEM images in Cucuteni-Tripolye culture [J].
Danila, Emilian ;
Moraru, Luminita ;
Dey, Nilanjan ;
Ashour, Amira S. ;
Shi, Fuqian ;
Fong, Simon James ;
Khan, Salam ;
Biswas, Anjan .
OPTIK, 2018, 164 :538-546
[16]   A wavelet-based method for multifractal image analysis.: II.: Applications to synthetic multifractal rough surfaces [J].
Decoster, N ;
Roux, SG ;
Arnéodo, A .
EUROPEAN PHYSICAL JOURNAL B, 2000, 15 (04) :739-764
[17]   The microstructure of cement paste and concrete - a visual primer [J].
Diamond, S .
CEMENT & CONCRETE COMPOSITES, 2004, 26 (08) :919-933
[18]   Characterization and classification of pore structures in deeply buried carbonate rocks based on mono- and multifractal methods [J].
Duan, Ruiqi ;
Xu, Zhifang ;
Dong, Yanhui ;
Liu, Wenjing .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 203
[19]  
Dyyak I.I., 2019, MMC, V6, P239, DOI [10.23939/mmc2019.02.239, DOI 10.23939/MMC2019.02.239]
[20]   Modeling the elastic modulus of cement paste with X-ray computed tomography and a hybrid analytical-numerical algorithm: The effect of structural heterogeneity [J].
Gao, Y. ;
Li, W. ;
Wu, K. ;
Yuan, Q. .
CEMENT & CONCRETE COMPOSITES, 2021, 122 (122)