Visual and haptic feedback in detecting motor imagery within a wearable brain-computer interface

被引:10
作者
Arpaia, Pasquale [1 ,2 ,3 ]
Coyle, Damien [4 ]
Donnarumma, Francesco [1 ,5 ]
Esposito, Antonio [1 ,6 ]
Natalizio, Angela [1 ,6 ]
Parvis, Marco [6 ]
机构
[1] Augmented Real Hlth Monitoring Lab ARHeMLab, Naples, Italy
[2] Univ Napoli Federico II, Dept Elect Engn & Informat Technol DIETI, Naples, Italy
[3] Univ Napoli Federico II, Ctr Interdipartimentale Ric Management Sanit & Inn, Naples, Italy
[4] Univ Ulster, Intelligent Syst Res Ctr, Derry, North Ireland
[5] Natl Res Council ISTC CNR, Inst Cognit Sci & Technol, Rome, Italy
[6] Politecn Torino, Dept Elect & Telecommun DET, Turin, Italy
基金
英国工程与自然科学研究理事会;
关键词
Brain-computer interface; Motor imagery; Electroencephalography; Extended reality; Haptic; Neurofeedback;
D O I
10.1016/j.measurement.2022.112304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a wearable brain-computer interface relying on neurofeedback in extended reality for the enhancement of motor imagery training. Visual and vibrotactile feedback modalities were evaluated when presented either singularly or simultaneously. Only three acquisition channels and state-of-the-art vibrotactile chest-based feedback were employed. Experimental validation was carried out with eight subjects participating in two or three sessions on different days, with 360 trials per subject per session. Neurofeedback led to statistically significant improvement in performance over the two/three sessions, thus demonstrating for the first time functionality of a motor imagery-based instrument even by using an utmost wearable electroencephalograph and a commercial gaming vibrotactile suit. In the best cases, classification accuracy exceeded 80% with more than 20% improvement with respect to the initial performance. No feedback modality was generally preferable across the cohort study, but it is concluded that the best feedback modality may be subject-dependent.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface
    Kondo, Toshiyuki
    Saeki, Midori
    Hayashi, Yoshikatsu
    Nakayashiki, Kosei
    Takata, Yohei
    HUMAN MOVEMENT SCIENCE, 2015, 43 : 239 - 249
  • [32] A Novel Hybrid Brain-Computer Interface Combining Motor Imagery and Intermodulation Steady-State Visual Evoked Potential
    Chi, Xinyi
    Wan, Chunxiao
    Wang, Chunyan
    Zhang, Yong
    Chen, Xiaogang
    Cui, Hongyan
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 1525 - 1535
  • [33] Is Implicit Motor Imagery a Reliable Strategy for a Brain-Computer Interface?
    Osuagwu, Bethel A.
    Zych, Magdalena
    Vuckovic, Aleksandra
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (12) : 2239 - 2248
  • [34] Hybrid brain-computer interface with motor imagery and error-related brain activity
    Mousavi, Mahta
    Krol, Laurens R.
    de Sa, Virginia R.
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (05)
  • [35] Motor Imagery Brain-Computer Interface for RPAS Command and Control
    Arnaldo, Rosa
    Gomez Comendador, Fernando
    Perez, Luis
    Rodriguez, Alvaro
    ADVANCES IN HUMAN FACTORS AND SYSTEMS INTERACTION, 2018, 592 : 325 - 335
  • [36] A wearable brain-computer interface to play an endless runner game by self-paced motor imagery
    Arpaia, Pasquale
    Esposito, Antonio
    Galasso, Enza
    Galdieri, Fortuna
    Natalizio, Angela
    JOURNAL OF NEURAL ENGINEERING, 2025, 22 (02)
  • [37] Designing discriminative spatial filter vectors in motor imagery brain-computer interface
    Lee, Kyeong-Yeon
    Kim, Sun
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2013, 23 (02) : 147 - 151
  • [38] Feature fusion for improving performance of motor imagery brain-computer interface system
    Radman, Moein
    Chaibakhsh, Ali
    Nariman-zadeh, Nader
    He, Huiguang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
  • [39] A Hybrid Transfer Learning Approach for Motor Imagery Classification in Brain-Computer Interface
    Wang, Xuying
    Yang, Rui
    Huang, Mengjie
    Yang, Zhengni
    Wan, Zitong
    2021 IEEE 3RD GLOBAL CONFERENCE ON LIFE SCIENCES AND TECHNOLOGIES (IEEE LIFETECH 2021), 2021, : 496 - 500
  • [40] A Spiking Neural Network for Brain-Computer Interface of Four Classes Motor Imagery
    Li, Yulin
    Shen, Hui
    Hu, Dewen
    HUMAN BRAIN AND ARTIFICIAL INTELLIGENCE, HBAI 2022, 2023, 1692 : 148 - 160