Optimization of urban transport; an alternative to checkerboard towns plans

被引:1
作者
Hernandez-Lopez, Eymard [1 ]
Wences, Giovanni [2 ]
机构
[1] Tecnol Estudios Super Oriente Estado Mexico Posgr, San Isidro S-N, Tecamachalco 56400, Los Reyes Acaqu, Mexico
[2] Univ Autonoma Guerrero, Escuela Super Matemat 2, Av Delicias S-N, Ciudad Altamirano 40660, Guerrero, Mexico
关键词
Urban transport; ramified optimal transport; heuristic algorithms; nonparametric test; MODEL;
D O I
10.1142/S1793830922501567
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we established a precedent to provide urban planning alternatives, given that in modern mobility problems, it is difficult to provide a corrective solution. The proposal of this work focuses on finding preventive rather than remedial solutions, although in particular cases, it may be applicable. We simulated town design situations with optimal ramified transport and metaheuristic optimization methods. For this purpose, it was necessary to analyze the essential aspects of road transportation and traffic problems in the world's leading cities, considering the hypodamic planes proposed in antiquity and contrasting their properties with optimal ramified transportation.
引用
收藏
页数:20
相关论文
共 20 条
[1]  
[Anonymous], 1998, PROB APPL S
[2]  
Bernot M, 2009, LECT NOTES MATH, V1955, P1, DOI 10.1007/978-3-540-69315-4
[3]   A model for the optimal planning of an urban area [J].
Buttazzo, G ;
Santambrogio, F .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (02) :514-530
[4]  
Buttazzo G., 2009, LECT NOTES MATH
[5]  
Buttazzo G, 2006, ADV MECH MATH, V12, P13
[6]   A Mass Transportation Model for the Optimal Planning of an Urban Region [J].
Buttazzo, Giuseppe ;
Santambrogio, Filippo .
SIAM REVIEW, 2009, 51 (03) :593-610
[7]  
Federal Housing Administration, 1938, UND VAL PROC TITL 2
[8]   Dynamic programming for minimum steiner trees [J].
Fuchs, B. ;
Kern, W. ;
Moelle, D. ;
Richter, S. ;
Rossmanith, Peter ;
Wang, X. .
THEORY OF COMPUTING SYSTEMS, 2007, 41 (03) :493-500
[9]  
Garey M. R., 1979, Computers and intractability. A guide to the theory of NP-completeness
[10]  
Kantorovich Leonid Vitalevich, 1948, USP MAT NAUK, P225, DOI [10.1007/s10958-006-0050-9, DOI 10.1007/S10958-006-0050-9]