The Sphinx and the egg: Evolutionary enigmas of the (glyco)sphingolipid biosynthetic pathway

被引:6
作者
Biran, Assaf [1 ]
Santos, Tania C. B. [1 ]
Dingjan, Tamir [1 ]
Futerman, Anthony H. [1 ]
机构
[1] Weizmann Inst Sci, Dept Biomol Sci, IL-7610001 Rehovot, Israel
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS | 2024年 / 1869卷 / 03期
关键词
Sphingolipids; Glycosphingolipids; Transmembrane protein; Golgi apparatus; Eukaryogenesis; Metabolic evolution; Darwinian evolution; Membrane trafficking; PLECKSTRIN HOMOLOGY DOMAIN; SERINE PALMITOYLTRANSFERASE; ENDOPLASMIC-RETICULUM; SPHINGOLIPID BIOSYNTHESIS; NONVESICULAR TRAFFICKING; TRANSBILAYER MOVEMENT; GOLGI-APPARATUS; PROTEIN SMSR; CERAMIDE; SPHINGOMYELIN;
D O I
10.1016/j.bbalip.2024.159462
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In eukaryotes, the de novo synthesis of sphingolipids (SLs) consists of multiple sequential steps which are compartmentalized between the endoplasmic reticulum and the Golgi apparatus. Studies over many decades have identified the enzymes in the pathway, their localization, topology and an array of regulatory mechanisms. However, little is known about the evolutionary forces that underly the generation of this complex pathway or of its anteome, i.e., the metabolic pathways that converge on the SL biosynthetic pathway and are essential for its activity. After briefly describing the pathway, we discuss the mechanisms by which the enzymes of the SL biosynthetic pathway are targeted to their different subcellular locations, how the pathway per se may have evolved, including its compartmentalization, and the relationship of the pathway to eukaryogenesis. We discuss the circular interdependence of the evolution of the SL pathway, and comment on whether current Darwinian evolutionary models are able to provide genuine mechanistic insight into how the pathway came into being.
引用
收藏
页数:11
相关论文
共 112 条
[21]   A comprehensive classification system for lipids [J].
Fahy, E ;
Subramaniam, S ;
Brown, HA ;
Glass, CK ;
Merrill, AH ;
Murphy, RC ;
Raetz, CRH ;
Russell, DW ;
Seyama, Y ;
Shaw, W ;
Shimizu, T ;
Spener, F ;
van Meer, G ;
VanNieuwenhze, MS ;
White, SH ;
Witztum, JL ;
Dennis, EA .
JOURNAL OF LIPID RESEARCH, 2005, 46 (05) :839-861
[22]   Origin and evolution of metabolic pathways [J].
Fani, Renato ;
Fondi, Marco .
PHYSICS OF LIFE REVIEWS, 2009, 6 (01) :23-52
[23]  
Futerman A.H., 2021, BIOCH LIPIDS LIPOPRO, P281, DOI DOI 10.1016/B978-0-12-824048-9.00009-2
[24]   The ins and outs of sphingolipid synthesis [J].
Futerman, AH ;
Riezman, H .
TRENDS IN CELL BIOLOGY, 2005, 15 (06) :312-318
[25]   DETERMINATION OF THE INTRACELLULAR SITES AND TOPOLOGY OF GLUCOSYLCERAMIDE SYNTHESIS IN RAT-LIVER [J].
FUTERMAN, AH ;
PAGANO, RE .
BIOCHEMICAL JOURNAL, 1991, 280 :295-302
[26]  
FUTERMAN AH, 1990, J BIOL CHEM, V265, P8650
[27]   Origin and evolution of metabolic sub-cellular compartmentalization in eukaryotes [J].
Gabaldon, Toni ;
Pittis, Alexandros A. .
BIOCHIMIE, 2015, 119 :262-268
[28]  
Gasteiger E., 2005, PROTEOMICS PROTOCOLS, P571, DOI [10.1385/1-59259-890-0:571, 10.1385/1-59259-584-7:531]
[29]  
Gault Christopher R, 2010, Adv Exp Med Biol, V688, P1
[30]  
Geiger O., 2019, Biogenesis of Fatty Acids, Lipids and Membranes, P123, DOI [10.1007/978-3-319-50430-812, DOI 10.1007/978-3-319-50430-812]