The Sphinx and the egg: Evolutionary enigmas of the (glyco)sphingolipid biosynthetic pathway

被引:6
作者
Biran, Assaf [1 ]
Santos, Tania C. B. [1 ]
Dingjan, Tamir [1 ]
Futerman, Anthony H. [1 ]
机构
[1] Weizmann Inst Sci, Dept Biomol Sci, IL-7610001 Rehovot, Israel
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS | 2024年 / 1869卷 / 03期
关键词
Sphingolipids; Glycosphingolipids; Transmembrane protein; Golgi apparatus; Eukaryogenesis; Metabolic evolution; Darwinian evolution; Membrane trafficking; PLECKSTRIN HOMOLOGY DOMAIN; SERINE PALMITOYLTRANSFERASE; ENDOPLASMIC-RETICULUM; SPHINGOLIPID BIOSYNTHESIS; NONVESICULAR TRAFFICKING; TRANSBILAYER MOVEMENT; GOLGI-APPARATUS; PROTEIN SMSR; CERAMIDE; SPHINGOMYELIN;
D O I
10.1016/j.bbalip.2024.159462
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In eukaryotes, the de novo synthesis of sphingolipids (SLs) consists of multiple sequential steps which are compartmentalized between the endoplasmic reticulum and the Golgi apparatus. Studies over many decades have identified the enzymes in the pathway, their localization, topology and an array of regulatory mechanisms. However, little is known about the evolutionary forces that underly the generation of this complex pathway or of its anteome, i.e., the metabolic pathways that converge on the SL biosynthetic pathway and are essential for its activity. After briefly describing the pathway, we discuss the mechanisms by which the enzymes of the SL biosynthetic pathway are targeted to their different subcellular locations, how the pathway per se may have evolved, including its compartmentalization, and the relationship of the pathway to eukaryogenesis. We discuss the circular interdependence of the evolution of the SL pathway, and comment on whether current Darwinian evolutionary models are able to provide genuine mechanistic insight into how the pathway came into being.
引用
收藏
页数:11
相关论文
共 112 条
[1]   Serine palmitoyltransferase assembles at ER-mitochondria contact sites [J].
Aaltonen, Mari J. ;
Alecu, Irina ;
Konig, Tim ;
Bennett, Steffany A. L. ;
Shoubridge, Eric A. .
LIFE SCIENCE ALLIANCE, 2022, 5 (02)
[2]   A sophisticated, differentiated Golgi in the ancestor of eukaryotes (vol 16, 27, 2018) [J].
Barlow, Lael D. ;
Nyvltova, Eva ;
Aguilar, Maria ;
Tachezy, Jan ;
Dacks, Joel B. .
BMC BIOLOGY, 2018, 16
[3]   Bioactive sphingolipids: metabolism and function [J].
Bartke, Nana ;
Hannun, Yusuf A. .
JOURNAL OF LIPID RESEARCH, 2009, 50 :S91-S96
[4]   UniProt: the Universal Protein Knowledgebase in 2023 [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Ahmad, Shadab ;
Alpi, Emanuele ;
Bowler-Barnett, Emily H. ;
Britto, Ramona ;
Cukura, Austra ;
Denny, Paul ;
Dogan, Tunca ;
Ebenezer, ThankGod ;
Fan, Jun ;
Garmiri, Penelope ;
Gonzales, Leonardo Jose da Costa ;
Hatton-Ellis, Emma ;
Hussein, Abdulrahman ;
Ignatchenko, Alexandr ;
Insana, Giuseppe ;
Ishtiaq, Rizwan ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Kandasaamy, Swaathi ;
Lock, Antonia ;
Luciani, Aurelien ;
Lugaric, Marija ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Mishra, Alok ;
Moulang, Katie ;
Nightingale, Andrew ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Raposo, Pedro ;
Rice, Daniel L. ;
Saidi, Rabie ;
Santos, Rafael ;
Speretta, Elena ;
Stephenson, James ;
Totoo, Prabhat ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Warner, Kate ;
Watkins, Xavier ;
Zellner, Hermann .
NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) :D523-D531
[5]   The evolution of protein targeting and translocation systems [J].
Bohnsack, Markus T. ;
Schleiff, Enrico .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2010, 1803 (10) :1115-1130
[6]   ATP-binding cassette transporters mediate differential biosynthesis of glycosphingolipid species [J].
Budani, Monique ;
Auray-Blais, Christiane ;
Lingwood, Clifford .
JOURNAL OF LIPID RESEARCH, 2021, 62
[7]   Transbilayer movement of monohexosylsphingolipids in endoplasmic reticulum and Golgi membranes [J].
Buton, X ;
Hervé, P ;
Kubelt, J ;
Tannert, A ;
Burger, KNJ ;
Fellmann, P ;
Müller, P ;
Herrmann, A ;
Seigneuret, M ;
Devaux, PF .
BIOCHEMISTRY, 2002, 41 (43) :13106-13115
[8]   Mechanism and inhibition of human UDP-GlcNAc 2-epimerase, the key enzyme in sialic acid biosynthesis [J].
Chen, Sheng-Chia ;
Huang, Chi-Hung ;
Lai, Shu-Jung ;
Yang, Chia Shin ;
Hsiao, Tzu-Hung ;
Lin, Ching-Heng ;
Fu, Pin-Kuei ;
Ko, Tzu-Ping ;
Chen, Yeh .
SCIENTIFIC REPORTS, 2016, 6
[9]   New genes as drivers of phenotypic evolution [J].
Chen, Sidi ;
Krinsky, Benjamin H. ;
Long, Manyuan .
NATURE REVIEWS GENETICS, 2013, 14 (09) :645-660
[10]   UDP-GlC:glycoprotein glucosyltransferase-glucosidase II, the ying-yang of the ER quality control [J].
D'Alessio, Cecilia ;
Caramelo, Julio J. ;
Parodi, Armando J. .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2010, 21 (05) :491-499