Abelian geometric fundamental groups for curves over a p-adic field

被引:0
作者
Gazaki, Evangelia [1 ]
Hiranouchi, Toshiro [2 ]
机构
[1] Univ Virginia, Dept Math, 221 Kerchof Hall,141 Cabell Dr, Charlottesville, VA 22904 USA
[2] Kyushu Inst Technol, Grad Sch Engn, Dept Basic Sci, 1-1 Sensui Cho,Tobata Ku, Kitakyushu, Fukuoka 8048550, Japan
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2023年 / 35卷 / 03期
关键词
Class field theory; Fundamental groups; and Elliptic curves; MILNOR K-GROUPS; COMPLEX MULTIPLICATION; ELLIPTIC-CURVES; VARIETIES;
D O I
10.5802/jtnb.1269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a curve X over a p-adic field k, using the class field theory of X due to S. Bloch and S. Saito we study the abelian geometric fundamental group rab 1 (X)geo of X. In particular, we investigate a subgroup of rab 1(X)geo which classifies the geometric and abelian coverings of X which allow possible ramification over the special fiber of the model of X. Under the assumptions that X has a k -rational point, X has good reduction and its Jacobian variety has good ordinary reduction, we give some upper and lower bounds of this subgroup of rab 1 (X)geo.
引用
收藏
页码:905 / 946
页数:43
相关论文
共 43 条
[1]  
[Anonymous], 1992, Proceedings of Symposia in Pure Mathematics
[2]  
[Anonymous], 1941, Abh Math Semin Univ Hambg, DOI DOI 10.1007/BF02940746
[3]  
[Anonymous], 1990, Ergebnisse der Mathematik und ihrer Grenzgebiete, DOI DOI 10.1007/978-3-642-51438-8
[4]  
[Anonymous], 1986, Jacobian Varieties
[5]   ALGEBRAIC K-THEORY AND CLASSFIELD THEORY FOR ARITHMETIC SURFACES [J].
BLOCH, S .
ANNALS OF MATHEMATICS, 1981, 114 (02) :229-265
[6]   Kummer theory for abelian varieties over local fields [J].
Coates, J ;
Greenberg, R .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :129-174
[7]  
DELIGNE P, 1969, PUBL MATH IHES, V36, P75
[8]  
FESENKO IB, 2002, TRANSLATIONS MATH MO, V121
[9]   Zero Cycles on a Product of Elliptic Curves Over a p-adic Field [J].
Gazaki, Evangelia ;
Leal, Isabel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (14) :10586-10625
[10]   Divisibility results for zero-cycles [J].
Gazaki, Evangelia ;
Hiranouchi, Toshiro .
EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (04) :1458-1501