Construction of two-qubit gates using √ B Gate

被引:0
作者
Karthick Selvan, M. [1 ]
Balakrishnan, S. [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Phys, Vellore, Tamil Nadu, India
关键词
nonlocal two-qubit gates; root B Gate; Ion-trap quantum computer;
D O I
10.1088/1402-4896/ad23b6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the circuit model of quantum computation, an entangling two-qubit gate and a set of single-qubit gates are used as universal gate set or basis gates for doing quantum computation. CNOT and root iSWAP gates, the perfect entanglers that can create maximally entangled two-qubit states in one application, are broadly used entangling two-qubit basis gates in quantum computers. In this paper, we analyze the potentiality of root B gate, an unexplored non-perfect entangler of the form,+ps sps s & Auml;& Auml;expii816xxyy()( )( ), as an entangling two-qubit basis gate in quantum computers by study ingits ability to generate other two-qubit gates. We derive a necessary condition for a two-qubit gate to be generated by n applications of root B gate. Using this condition, we show that the gates that can be generated by two and three applications of root B gate are contained in the 50% and 92.97% of the volume of Weyl chamber of two-qubit gates, respectively. We prove that two applications of root B gate can generate both root SWAP and root SWAP dagger which is not possible for CNOT and root iSWAP gates; further, we conjecture that three applications of root B gate can generate all perfect entanglers. Finally, we discuss about the construction of a three independent parameter universal two-qubit quantum circuit using four root B gates that can generate all two-qubit gates. In the end, we mention about the schemes to implement root B gate in ion-trap quantum computers
引用
收藏
页数:12
相关论文
共 30 条
[1]   Universal Fidelity Reduction of Quantum Operations from Weak Dissipation [J].
Abad, Tahereh ;
Fernandez-Pendas, Jorge ;
Kockum, Anton Frisk ;
Johansson, Goran .
PHYSICAL REVIEW LETTERS, 2022, 129 (15)
[2]   Optimal simulation of two-qubit Hamiltonians using general local operations [J].
Bennett, CH ;
Cirac, JI ;
Leifer, MS ;
Leung, DW ;
Linden, N ;
Popescu, S ;
Vidal, G .
PHYSICAL REVIEW A, 2002, 66 (01) :123051-1230516
[3]  
Bhatia R., 2013, Matrix analysis, V169
[4]   An analytical decomposition protocol for optimal implementation of two-qubit entangling gates [J].
Blaauboer, M. ;
de Visser, R. L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (39)
[5]   Scalable ion trap quantum computation in decoherence-free subspaces with pairwise interactions only [J].
Brown, KR ;
Vala, J ;
Whaley, KB .
PHYSICAL REVIEW A, 2003, 67 (01) :5
[6]   Lower bounds on the complexity of simulating quantum gates [J].
Childs, AM ;
Haselgrove, HL ;
Nielsen, MA .
PHYSICAL REVIEW A, 2003, 68 (05) :6
[7]   Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits [J].
Chow, Jerry M. ;
Corcoles, A. D. ;
Gambetta, Jay M. ;
Rigetti, Chad ;
Johnson, B. R. ;
Smolin, John A. ;
Rozen, J. R. ;
Keefe, George A. ;
Rothwell, Mary B. ;
Ketchen, Mark B. ;
Steffen, M. .
PHYSICAL REVIEW LETTERS, 2011, 107 (08)
[8]   Comment on "Universal quantum circuit for two-qubit transformations with three controlled-NOT gates" and "Recognizing small-circuit structure in two-qubit operators" [J].
Coffey, Mark W. ;
Deiotte, Ron ;
Semi, Torey .
PHYSICAL REVIEW A, 2008, 77 (06)
[9]   Demonstration of a small programmable quantum computer with atomic qubits [J].
Debnath, S. ;
Linke, N. M. ;
Figgatt, C. ;
Landsman, K. A. ;
Wright, K. ;
Monroe, C. .
NATURE, 2016, 536 (7614) :63-+
[10]   Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries [J].
Dodd, JL ;
Nielsen, MA ;
Bremner, MJ ;
Thew, RT .
PHYSICAL REVIEW A, 2002, 65 (04) :4