Finite element investigation of the influence of a new transpedicular vertebral implant positioning on biomechanical responses of the spine segment

被引:1
作者
Hambli, Ridha [1 ,6 ]
De Leacy, Reade [2 ]
Cornelis, Francois [3 ,4 ]
Vienney, Cecile [5 ]
机构
[1] Univ Tours, Univ Orleans, INSA CVL, LaMe, F-45000 Orleans, France
[2] Icahn Sch Med Mt Sinai, Neurosurg, New York, NY USA
[3] Mem Sloan Kettering Canc Ctr, 1275 York Ave, New York, NY 10065 USA
[4] Weill Cornell Med Coll, Radiol Dept, 1275 York Ave, New York, NY 10065 USA
[5] Hyprevention Res & Dev, Pessac, France
[6] Univ Tours, Univ Orleans, INSA CVL, LaMe, 8 rue Leonard Vinci, F-45000 Orleans, France
基金
美国国家卫生研究院;
关键词
Spine segment; Compression fracture; V-STRUTO device; Positioning; 3D finite element; POSTERIOR FIXATION; RISK-FACTORS; FAILURE; VERTEBROPLASTY; ADJACENT; DISC; FRACTURES;
D O I
10.1016/j.medengphy.2024.104100
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The optimal positioning of an implant into a living organ such as femurs and vertebra is still an open problem. In particular, vertebral implant position has a significant impact on the results on spine behaviour after treatment in terms of stiffness, range of motion (ROM), wear, loosening and failure. In the current work, a 3D finite element analysis was conducted to investigate the positioning parameters of a novel transpedicular implant (V-STRUT (c), Hyprevention, France) in terms of placement of the implant in the treated vertebra. The implant was designed in order to strength osteoporotic vertebral body and the related spine segment under compressive load. The effects of the axial and sagittal positions of the implant in the treated vertebra was investigated in terms of stress and stiffness variations. A 3D finite element model of an osteoporotic spine segment was built based on a Computed Tomography (CT) scan of an osteoporotic female (69 yo). The model is composed of T12, L1 and L2 vertebrae and corresponding intervertebral discs and ligaments. The bone tissue was modeled as a heterogeneous material with properties assigned based on the grey scale levels. The intervertebral discs were modeled using two regions describing the annulus and the nucleus and linear beam elements with specific stiffness each were used representing each ligament. The simulations indicated that the sagittal position (distance d) plays a role on the stress distribution. The closer the implant to the interior wall the lower the stress applied to the spine segment. Nevertheless, the axial plane position (distance h) have limited effects on the stress applied to the bone with a higher stress applied to the device (subjected to a higher bending load). These results can have direct clinical implications when dealing with the optimal placement of the implant. It is also possible to select a particular position in order to assign a given (target) stiffness for a patient.
引用
收藏
页数:8
相关论文
共 31 条
[1]   Comparative biomechanical study of a new transpedicular vertebral device and vertebroplasty for the treatment or prevention of vertebral compression fractures [J].
Aebi, Max ;
Maas, Charlene ;
von Treuheim, Theodor Di Pauli ;
Friedrich, Hannah ;
Wilke, Hans-Joachim .
CLINICAL BIOMECHANICS, 2018, 56 :40-45
[2]   Risk of subsequent fracture after prior fracture among older women [J].
Balasubramanian, A. ;
Zhang, J. ;
Chen, L. ;
Wenkert, D. ;
Daigle, S. G. ;
Grauer, A. ;
Curtis, J. R. .
OSTEOPOROSIS INTERNATIONAL, 2019, 30 (01) :79-92
[3]   LATE FAILURE OF POSTERIOR FIXATION WITHOUT BONE FUSION FOR VERTEBRAL METASTASES [J].
Bellato, Renato Tavares ;
Jacobsen Teixeira, William Gemio ;
Torelli, Alessandro Gonzalez ;
Cristante, Alexandre Fogaca ;
Pessoa de Barros Filho, Tarcsio Eloy ;
de Camargo, Olavo Pires .
ACTA ORTOPEDICA BRASILEIRA, 2015, 23 (06) :303-306
[4]   Percutaneous Transpedicular Fixation by PEEK Polymer Implants Combined with Cementoplasty for Vertebral Compression Fractures: A Pilot Study [J].
Cornelis, F. H. ;
Barral, M. ;
Le Huec, J. C. ;
Deschamps, F. ;
De Baere, T. ;
Tselikas, L. .
CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY, 2021, 44 (04) :642-646
[5]   Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together [J].
Dreischarf, M. ;
Zander, T. ;
Shirazi-Adl, A. ;
Puttlitz, C. M. ;
Adam, C. J. ;
Chen, C. S. ;
Goel, V. K. ;
Kiapour, A. ;
Kim, Y. H. ;
Labus, K. M. ;
Little, J. P. ;
Park, W. M. ;
Wang, Y. H. ;
Wilke, H. J. ;
Rohlmann, A. ;
Schmidt, H. .
JOURNAL OF BIOMECHANICS, 2014, 47 (08) :1757-1766
[6]  
Frost HM, 2004, ANGLE ORTHOD, V74, P3
[7]  
Glorion M., 2016, Eur Spine J, V25, P2339
[8]   Finite Element Analysis of 3 Posterior Fixation Techniques in the Lumbar Spine [J].
Gong, Zhiqiang ;
Chen, Zixian ;
Feng, Zhenzhou ;
Cao, Yuanwu ;
Jiang, Chun ;
Jiang, Xiaoxing .
ORTHOPEDICS, 2014, 37 (05) :E441-E448
[9]   Case-specific non-linear finite element models to predict failure behavior in two functional spinal units [J].
Groenen, Karlijn H. J. ;
Bitter, Thom ;
van Veluwen, Tristia C. G. ;
van der Linden, Yvette M. ;
Verdonschot, Nico ;
Tanck, Esther ;
Janssen, Dennis .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2018, 36 (12) :3208-3218
[10]   Effect of a new transpedicular vertebral device for the treatment or prevention of vertebral compression fractures: A finite element study [J].
Hambli, Ridha ;
De Leacy, Reade ;
Vienney, Cecile .
CLINICAL BIOMECHANICS, 2023, 102