Dynamic stepsize iteration process for solving split common fixed point problems with applications

被引:8
作者
Kumar, Ajay [1 ]
Thakur, Balwant Singh [1 ]
Postolache, Mihai [2 ,3 ]
机构
[1] Pt Ravishankar Shukla Univ, Sch Studies Math, Raipur 492010, CG, India
[2] Univ Politehn Bucuresti, Dept Math & Informat, Bucharest 060042, Romania
[3] Romanian Acad, Inst Math Stat & Appl Math, Gheorghe Mihoc Caius Iacob, Bucharest, Romania
关键词
Banach space; Strong convergence; Split feasibility problem; Variational inclusion; Equilibrium problem; RELATIVELY NONEXPANSIVE-MAPPINGS; FEASIBILITY PROBLEM; BANACH-SPACES; PROJECTION; SETS; APPROXIMATION; ALGORITHMS; EXISTENCE; OPERATORS;
D O I
10.1016/j.matcom.2023.12.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we study the split common fixed point problem for two nonlinear mappings in p-uniformly convex and uniformly smooth Banach spaces. We propose an algorithm which uses dynamic stepsize, it allows to be easily implemented without prior information about operator norm. We further apply our result to solve the split variational inclusion problem, equilibrium problem and convexly constrained linear inverse problem. Moreover, we provide numerical examples to verify efficiency of our algorithm.
引用
收藏
页码:498 / 511
页数:14
相关论文
共 43 条
[1]  
Alber YI, 1996, THEORY APPL NONLINEA, V178, P15
[2]  
Aoyama K, 2008, J CONVEX ANAL, V15, P395
[3]  
Aoyama K, 2009, J NONLINEAR CONVEX A, V10, P131
[4]  
Blum E., 1994, MATH STUDENT, V63, P123
[6]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[7]  
Byrne C, 2012, J NONLINEAR CONVEX A, V13, P759
[8]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[9]   AN ITERATIVE ROW-ACTION METHOD FOR INTERVAL CONVEX-PROGRAMMING [J].
CENSOR, Y ;
LENT, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1981, 34 (03) :321-353
[10]  
Censor Y., 1994, Numer Algorithms, V8, P221, DOI [10.1007/BF02142692, DOI 10.1007/BF02142692]