Efflux and motility are two key biological functions in bacteria. Recent findings have shown that efflux impacts flagellum biosynthesis and motility in Escherichia coli and other bacteria. AcrR is known to be the major transcriptional repressor of AcrAB-TolC, the main multidrug efflux pump in E. coli and other Enterobacteriaceae. However, the underlying molecular mechanisms of how efflux and motility are co-regulated remain poorly understood. Here, we have studied the role of AcrR in direct regulation of motility in E. coli. By combining bioinformatics, electrophoretic mobility shift assays (EMSAs), gene expression, and motility experiments, we have found that AcrR represses motility in E. coli by directly repressing transcription of the flhDC operon, but not the other flagellum genes/operons tested. flhDC encodes the master regulator of flagellum biosynthesis and motility genes. We found that such regulation primarily occurs by direct binding of AcrR to the flhDC promoter region containing the first of the two predicted AcrR-binding sites identified in this promoter. This is the first report of direct regulation by AcrR of genes unrelated to efflux or detoxification. Moreover, we report that overexpression of AcrR restores to parental levels the increased swimming motility previously observed in E. coli strains without a functional AcrAB-TolC pump, and that such effect by AcrR is prevented by the AcrR ligand and AcrAB-TolC substrate ethidium bromide. Based on these and prior findings, we provide a novel model in which AcrR senses efflux and then co-regulates efflux and motility in E. coli to maintain homeostasis and escape hazards.