On the e-regular mild solution for fractional abstract integro-differential equations

被引:0
作者
Sousa, J. Vanterler C. [1 ]
Pulido, M. Aurora P. [2 ]
Govindaraj, V. [3 ]
de Oliveira, E. Capelas [2 ]
机构
[1] Univ Fed ABC, Ctr Matemat Computacao & Cognicao, BR-09210580 Santo Andre, SP, Brazil
[2] IMECC State Univ Campinas, Dept Appl Math, BR-13083859 Campinas, SP, Brazil
[3] Natl Inst Technol Puducherry, Dept Math, Karaikal 609609, India
关键词
Fractional integro-differential equations; Existence; Regularity; Continuous dependence; e-Regular mild solutions; Interpolation-extrapolation scales; DIFFERENTIAL-EQUATIONS; CRITICAL NONLINEARITIES; PARABOLIC PROBLEMS; EVOLUTION MODEL; CAUCHY-PROBLEMS;
D O I
10.1007/s00500-023-09172-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this present paper, we first obtained some estimates involving parts of e-regular mild solutions of the fractional integrodifferential equation. In this sense, through these preliminary results, we investigate the main results of this paper, i.e., the existence, regularity and continuous dependence of e-regular mild solutions for fractional abstract integro-differential equations in Banach space.
引用
收藏
页码:15533 / 15548
页数:16
相关论文
共 53 条
  • [1] REGULARITY PROPERTIES OF MILD SOLUTIONS FOR A CLASS OF VOLTERRA EQUATIONS WITH CRITICAL NONLINEARITIES
    Abadias, Luciano
    Alvarez, Edgardo
    Lizama, Carlos
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2018, 30 (02) : 219 - 256
  • [2] Numerical solution of a new mathematical model for intravenous drug administration
    Alijani, Zahra
    Shiri, Babak
    Perfilieva, Irina
    Baleanu, Dumitru
    [J]. EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) : 559 - 575
  • [3] AMANN H., 1993, TEUBNER TEXTE MATH, V133, P9, DOI [DOI 10.1007/978-3-663-11336-2, DOI 10.1007/978-3-663-11336-2_1]
  • [4] Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations
    Arrieta, JM
    Carvalho, AN
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (01) : 285 - 310
  • [5] Parabolic problems with nonlinear boundary conditions and critical nonlinearities
    Arrieta, JM
    Carvalho, AN
    Rodríguez-Bernal, A
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (02) : 376 - 406
  • [6] Nonlinear higher order fractional terminal value problems
    Baleanu, Dumitru
    Shiri, Babak
    [J]. AIMS MATHEMATICS, 2022, 7 (05): : 7489 - 7506
  • [7] Carvalho Neto P.M.D., 2013, FRACTIONAL DIFFERENT
  • [8] A GRONWALL INEQUALITY AND THE CAUCHY-TYPE PROBLEM BY MEANS OF ψ-HILFER OPERATOR
    Da Costa Sousa, Jose Vanterler
    De Oliveira, Edmundo Capelas
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2019, 11 (01): : 87 - 106
  • [9] A nonlinear fractional diffusion equation: Well-posedness, comparison results, and blow-up
    de Andrade, Bruno
    Siracusa, Giovana
    Viana, Arlucio
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [10] Well-posedness results for a class of semilinear time-fractional diffusion equations
    de Andrade, Bruno
    Vo Van Au
    O'Regan, Donal
    Nguyen Huy Tuan
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):