Learning modality feature fusion via transformer for RGBT-tracking

被引:11
作者
Cai, Yujue [1 ]
Sui, Xiubao [1 ]
Gu, Guohua [1 ]
Chen, Qian [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210014, Peoples R China
基金
中国国家自然科学基金;
关键词
RGB-T tracking; Deep learning; Transformer; Challenge-aware; Feature fusion; NETWORK;
D O I
10.1016/j.infrared.2023.104819
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
RGB-T tracking can be seen as multi-view fusion tracking, and in this study, we propose a network with transformer structure, Multi-Modal Mutual Propagation Tracker (MMMPT). In order to obtain robust appearance model from multi-modal data, we adopt encoder-decoder architecture for extract information. In the encoding stage, the template features of multiple frames enhance the common features across them through the self-attention mechanism to obtain time-invariant target representation. At the same time, it also interacts with multi-modal data through cross-modal propagation, resulting in a modal-invariant representation of the target. The transformer decoder transfers useful information from the template to search areas through a similarity matrix. We experiment on the RGBT234, GTOT, VTUAV and LasHeR datasets to assess the RGBT-transformer tracker. Extensive experiments indicate that our proposed framework is not inferior to the state-of-the-art trackers in terms of robustness and accuracy.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[2]   Learning Discriminative Model Prediction for Tracking [J].
Bhat, Goutam ;
Danelljan, Martin ;
Van Gool, Luc ;
Timofte, Radu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6181-6190
[3]  
Carion Nicolas, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12346), P213, DOI 10.1007/978-3-030-58452-8_13
[4]   Transformer Tracking [J].
Chen, Xin ;
Yan, Bin ;
Zhu, Jiawen ;
Wang, Dong ;
Yang, Xiaoyun ;
Lu, Huchuan .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :8122-8131
[5]  
Chenglong Li, 2020, Computer Vision - ECCV 2020 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12367), P222, DOI 10.1007/978-3-030-58542-6_14
[6]   ECO: Efficient Convolution Operators for Tracking [J].
Danelljan, Martin ;
Bhat, Goutam ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6931-6939
[7]  
Gao Y., 2019, P IEEECVF INT C COMP
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[10]  
Huang KL, 2022, Arxiv, DOI [arXiv:2202.02703, 10.48550/arXiv.2202.02703, DOI 10.48550/ARXIV.2202.02703]