Soil moisture dominates the interannual variability in alpine ecosystem productivity by regulating maximum photosynthetic capacity across the Qinghai-Tibetan Plateau

被引:8
|
作者
Zhang, Tao [1 ]
Tang, Yuanyuan [1 ]
Xu, Mingjie [1 ]
Zhao, Guang [2 ]
Cong, Nan [2 ]
Zheng, Zhoutao [2 ]
Zhu, Juntao [2 ]
Niu, Ben [2 ]
Chen, Zhi [2 ]
Zhang, Yangjian [2 ,3 ,4 ]
Chen, Ning [5 ]
He, Yongtao [2 ,4 ]
Yu, Guirui [2 ,4 ]
机构
[1] Shenyang Agr Univ, Coll Agron, Shenyang 110866, Peoples R China
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100101, Peoples R China
[4] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100190, Peoples R China
[5] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Key Lab Wetland Ecol & Environm, Changchun 130102, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Climate change; Phenology; Physiology; Carbon flux; Grassland; GROSS PRIMARY PRODUCTIVITY; DELAYED SPRING PHENOLOGY; NET CARBON UPTAKE; CLIMATE-CHANGE; GRASSLAND ECOSYSTEMS; AUTUMN PHENOLOGY; PLANT PHENOLOGY; IMPACTS; FLUXES; TEMPERATE;
D O I
10.1016/j.gloplacha.2023.104191
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The alpine ecosystems on the Qinghai-Tibetan Plateau are quite sensitive to climate change. The increasing temperature and changing precipitation patterns greatly affect the gross primary productivity (GPP) and disturb the carbon balances of these alpine ecosystems. To clarify the impacts of future climate change across the Qinghai-Tibetan Plateau, it is important to address the scientific issue "Which factor would dominate interannual variability (IAV) in GPP and through which path does it work?" To clarify this issue, two key processes, growing season length (GSL) and maximum photosynthetic capacity (GPPmax), were introduced to reveal the underlying mechanisms, and which of the environmental factors dominated their variations were studied specifically based on the flux and corresponding environmental observation data obtained in different types of alpine ecosystems across the Qinghai-Tibetan Plateau in this study. The results indicated that across the temperature- and waterlimited alpine ecosystems, the temperature controlled the GSL, but the water conditions dominated the variations in GPPmax. The soil water content (SWC) dominated GPPmax, which could explain 89% of the variation in GPPmax. The GSL alone was incapable of explaining IAV in GPP. Conversely, GPPmax is robust in explaining IAV in GPP, which could explain 94% of the annual GPP. Therefore, climate change would probably drive IAV in GPP through the path of "SWC -* GPPmax -* annual GPP" on the Qinghai-Tibetan Plateau. In addition, GPPmax together with GSL (GSL x GPPmax) could explain 99% of IAV in GPP, as they indicated the length of the carbon uptake time and the capacity of carbon sequestration, respectively. This study provides a new perspective on the predominant causes of IAV in GPP in alpine ecosystems, indicating that the changing precipitation patterns under future climate change will play a dominant role in affecting the carbon sink function of the Qinghai-Tibetan Plateau.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Effects of gravel on soil and vegetation properties of alpine grassland on the Qinghai-Tibetan plateau
    Qin, Yu
    Yi, Shuhua
    Chen, Jianjun
    Ren, Shilong
    Ding, Yongjian
    ECOLOGICAL ENGINEERING, 2015, 74 : 351 - 355
  • [32] Effects of Patchiness on Soil Properties and Degradation of Alpine Meadow on the Qinghai-Tibetan Plateau
    Zhang, Wei
    Yi, Shuhua
    Qin, Yu
    Zhang, Jinglin
    LAND, 2024, 13 (10)
  • [33] Plant–soil feedbacks in a sub-alpine meadow ecosystem with high plant diversity on the Qinghai-Tibetan Plateau
    Jin Hua Li
    Hua Zhang
    Wen Jin Li
    Johannes M. H. Knops
    Plant Ecology, 2015, 216 : 1659 - 1674
  • [34] Effects of Patchiness on Surface Soil Moisture of Alpine Meadow on the Northeastern Qinghai-Tibetan Plateau: Implications for Grassland Restoration
    Zhang, Wei
    Yi, Shuhua
    Qin, Yu
    Sun, Yi
    Shangguan, Donghui
    Meng, Baoping
    Li, Meng
    Zhang, Jianguo
    REMOTE SENSING, 2020, 12 (24) : 1 - 15
  • [35] Effects of microtopography on soil microbial communities in alpine meadows on the Qinghai-Tibetan Plateau
    Li, Xinwei
    Li, Xilai
    Shi, Yan
    Zhao, Shoujing
    Liu, Jiale
    Lin, Yinyi
    Li, Chunli
    Zhang, Chunhui
    CATENA, 2024, 239
  • [36] Soil Nutrient and Vegetation Diversity Patterns of Alpine Wetlands on the Qinghai-Tibetan Plateau
    Ma, Muyuan
    Zhu, Yaojun
    Wei, Yuanyun
    Zhao, Nana
    SUSTAINABILITY, 2021, 13 (11)
  • [37] The response of soil macroinvertebrates to alpine meadow degradation in the Qinghai-Tibetan Plateau, China
    Wu, Pengfei
    Zhang, Hongzhi
    Wang, Yong
    APPLIED SOIL ECOLOGY, 2015, 90 : 60 - 67
  • [38] Shrub encroachment accelerates the processes of moisture redistribution in alpine meadows on the Qinghai-Tibetan Plateau
    Zhao, Lirong
    Li, Kexin
    Zhu, Ni
    Gao, Junmei
    Zhang, Jing
    Wang, Di
    Wang, Xiaoli
    Wang, Yanlong
    Ma, Yushou
    Liu, Yu
    GEODERMA, 2025, 454
  • [39] The relative controls of temperature and soil moisture on the start of carbon flux phenology and net ecosystem production in two alpine meadows on the Qinghai-Tibetan Plateau
    Chai, Xi
    Shi, Peili
    Song, Minghua
    Zong, Ning
    He, Yongtao
    Li, Yingnian
    Zhang, Xianzhou
    Liu, Yanjiao
    JOURNAL OF PLANT ECOLOGY, 2020, 13 (02) : 247 - 255
  • [40] MODERATE GRAZING PROMOTES ECOSYSTEM CARBON SEQUESTRATION IN AN ALPINE MEADOW ON THE QINGHAI-TIBETAN PLATEAU
    Zou, Y. L.
    Niu, D. C.
    Fu, H.
    Zhang, Y. C.
    Wan, C. G.
    JOURNAL OF ANIMAL AND PLANT SCIENCES-JAPS, 2015, 25 (03): : 165 - 171