A new model based on artificial intelligence to screening preterm birth

被引:2
|
作者
de Andrade Junior, Valter Lacerda [1 ]
Franca, Marcelo Santucci [2 ]
Santos, Roberto Angelo Fernandes [1 ]
Hatanaka, Alan Roberto [2 ]
Cruz, Jader de Jesus [3 ]
Hamamoto, Tatiana Emy Kawanami [2 ]
Traina, Evelyn [2 ]
Sarmento, Stephanno Gomes Pereira [4 ]
Elito Junior, Julio [2 ]
Pares, David Baptista da Silva [2 ]
Mattar, Rosiane [2 ]
Araujo Junior, Edward [2 ,5 ]
Moron, Antonio Fernandes [2 ]
机构
[1] Impacta Sch Technol, Grad & Postgrad Dept, Sao Paulo, Brazil
[2] Fed Univ Sao Paulo EPM UNIFESP, Paulista Sch Med, Dept Obstet, Discipline Fetal Med,Screening & Prevent Preterm B, Sao Paulo, Brazil
[3] Ctr Hosp Univ Lisboa Cent, Fetal Med Unit, Lisbon, Portugal
[4] Med Sch Jundiai FMJ, Dept Obstet & Gynecol, Jundiai, Brazil
[5] Fed Univ Sao Paulo EPM UNIFESP, Paulista Sch Med, Dept Obstet, Discipline Fetal Med,Screening & Prevent Preterm B, Rua Napoleao Barros, 875 Vila Clementino, BR-04024002 Sao Paulo, Brazil
关键词
Preterm birth; cervical length; transvaginal ultrasound; artificial intelligence; VAGINAL PROGESTERONE; OBSTETRIC HISTORY; CERVICAL LENGTH; RISK; PREDICTION; DELIVERY; ENSEMBLE; PESSARY; WOMEN;
D O I
10.1080/14767058.2023.2241100
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Objective The objective of this study is to create a new screening for spontaneous preterm birth (sPTB) based on artificial intelligence (AI). Methods This study included 524 singleton pregnancies from 18th to 24th-week gestation after transvaginal ultrasound cervical length (CL) analyzes for screening sPTB < 35 weeks. AI model was created based on the stacking-based ensemble learning method (SBELM) by the neural network, gathering CL < 25 mm, multivariate unadjusted logistic regression (LR), and the best AI algorithm. Receiver Operating Characteristics (ROC) curve to predict sPTB < 35 weeks and area under the curve (AUC), sensitivity, specificity, accuracy, predictive positive and negative values were performed to evaluate CL < 25 mm, LR, the best algorithms of AI and SBELM. Results The most relevant variables presented by LR were cervical funneling, index straight CL/internal angle inside the cervix (& LE; 0.200), previous PTB < 37 weeks, previous curettage, no antibiotic treatment during pregnancy, and weight (& LE; 58 kg), no smoking, and CL < 30.9 mm. Fixing 10% of false positive rate, CL < 25 mm and SBELM present, respectively: AUC of 0.318 and 0.808; sensitivity of 33.3% and 47,3%; specificity of 91.8 and 92.8%; positive predictive value of 23.1 and 32.7%; negative predictive value of 94.9 and 96.0%. This machine learning presented high statistical significance when compared to CL < 25 mm after T-test (p < .00001). Conclusion AI applied to clinical and ultrasonographic variables could be a viable option for screening of sPTB < 35 weeks, improving the performance of short cervix, with a low false-positive rate.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Implementation of a Universal Cervical Length Screening Program for the Prevention of Preterm Birth
    Orzechowski, Kelly M.
    Nicholas, Sara S.
    Baxter, Jason K.
    Weiner, Stuart
    Berghella, Vincenzo
    AMERICAN JOURNAL OF PERINATOLOGY, 2014, 31 (12) : 1057 - 1062
  • [2] Screening for spontaneous preterm birth by cervical length and shear-wave elastography in the first trimester of pregnancy
    Feng, Qiaoli
    Chaemsaithong, Piya
    Duan, Honglei
    Ju, Xiaoqing
    Appiah, Kubi
    Shen, Lixia
    Wang, Xueqin
    Tai, Yiyun
    Leung, Tak Yeung
    Poon, Liona C.
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2022, 227 (03)
  • [3] Application of Artificial Intelligence in Early Diagnosis of Spontaneous Preterm Labor and Birth
    Lee, Kwang-Sig
    Ahn, Ki Hoon
    DIAGNOSTICS, 2020, 10 (09)
  • [4] Screening for preterm birth in twin pregnancies
    Roman, Amanda
    Ramirez, Alexandra
    Fox, Nathan S.
    AMERICAN JOURNAL OF OBSTETRICS & GYNECOLOGY MFM, 2022, 4 (02)
  • [5] Prediction of preterm birth using artificial intelligence: a systematic review
    Akazawa, Munetoshi
    Hashimoto, Kazunori
    JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2022, 42 (06) : 1662 - 1668
  • [6] A new screening of preterm birth in gestation with short cervix after pessary plus progesterone
    Franca, Marcelo Santucci
    de Andrade Jr, Valter Lacerda
    Hatanaka, Alan Roberto
    Santos, Roberto
    Carvalho, Francisco Herlanio Costa
    Costa, Maria Laura
    Franca, Gabriela Ubeda Santucci
    Mattar, Rosiane
    Mol, Ben Willem
    Moron, Antonio Fernandes
    Pacagnella, Rodolfo de Carvalho
    REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRICIA, 2024, 46
  • [7] Uterocervical angle: a novel ultrasound screening tool to predict spontaneous preterm birth
    Dziadosz, Margaret
    Bennett, Terri-Ann
    Dolin, Cara
    Honart, Anne West
    Pham, Amelie
    Lee, Sarah S.
    Pivo, Sarah
    Roman, Ashley S.
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2016, 215 (03)
  • [8] Randomized trial of screening for preterm birth in low-risk women - the preterm birth screening study
    Saccone, Gabriele
    Maruotti, Giuseppe Maria
    Morlando, Maddalena
    Visentin, Silvia
    De Angelis, Carlo
    Sarno, Laura
    Cosmi, Erich
    Torcia, Francesco
    Costanzi, Flavia
    Gragnano, Elisabetta
    Bartolini, Giorgia
    La Verde, Marco
    Borelli, Felice
    Savoie, Fabiana
    Schiattarella, Antonio
    De Franciscis, Pasquale
    Locci, Mariavittoria
    Guida, Maurizio
    AMERICAN JOURNAL OF OBSTETRICS & GYNECOLOGY MFM, 2024, 6 (05)
  • [9] Is universal screening for cervical length among singleton pregnancies with no history of preterm birth justified?
    Rozenberg, P.
    JOURNAL DE GYNECOLOGIE OBSTETRIQUE ET BIOLOGIE DE LA REPRODUCTION, 2016, 45 (10): : 1337 - 1345
  • [10] Cost-effectiveness of risk-based screening for cervical length to prevent preterm birth
    Einerson, Brett D.
    Grobman, William A.
    Miller, Emily S.
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2016, 215 (01) : 100.e1 - 100.e7