Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction

被引:116
作者
Fang, Cong [1 ,2 ]
Zhou, Jian [1 ,2 ,3 ]
Zhang, Lili [1 ,2 ,3 ]
Wan, Wenchao [4 ]
Ding, Yuxiao [3 ,5 ]
Sun, Xiaoyan [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[2] Shandong Energy Inst, Qingdao 266101, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Max Plank Inst Chem Energy Convers, D-45470 Mulheim, Germany
[5] Chinese Acad Sci, Lanzhou Inst Chem Phys, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
FINDING SADDLE-POINTS; METAL-SITE CATALYSTS; CO2; ELECTROREDUCTION; ACTIVITY ORIGIN; SINGLE; REDUCTION; HYDROGEN; DESIGN; ELECTROCATALYSTS; MONOLAYERS;
D O I
10.1038/s41467-023-40177-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dual-atom catalysts, particularly those with heteronuclear active sites, have the potential to outperform the well-established single-atom catalysts for oxygen evolution reaction, but the underlying mechanistic understanding is still lacking. Herein, a large-scale density functional theory is employed to explore the feasibility of *O-*O coupling mechanism, which can circumvent the scaling relationship with improving the catalytic performance of N-doped graphene supported Fe-, Co-, Ni-, and Cu-containing heteronuclear dual-atom catalysts, namely, M'M@NC. Based on the constructed activity maps, a rationally designed descriptor can be obtained to predict homonuclear catalysts. Seven heteronuclear and four homonuclear dual-atom catalysts possess high activities that outperform the minimum theoretical overpotential. The chemical and structural origin in favor of *O-*O coupling mechanism thus leading to enhanced reaction activity have been revealed. This work not only provides additional insights into the fundamental understanding of reaction mechanisms, but also offers a guideline for the accelerated discovery of efficient catalysts. The utilization of dual-atom catalysts holds the potential in surpassing single-atom catalysts for oxygen evolution reactions. Here, the authors examine the mechanism of dual-atom catalysts for oxygen evolution reaction and identify catalyst optimization recipes via large-scale computations.
引用
收藏
页数:14
相关论文
共 104 条
[1]   Recent Advances in Dual-Atom Site Catalysts for Efficient Oxygen and Carbon Dioxide Electrocatalysis [J].
An, Qizheng ;
Jiang, Jingjing ;
Cheng, Weiren ;
Su, Hui ;
Jiang, Yong ;
Liu, Qinghua .
SMALL METHODS, 2022, 6 (07)
[2]   Does the Oxygen Evolution Reaction follow the classical OH*, O*, OOH* path on single atom catalysts? [J].
Barlocco, Ilaria ;
Cipriano, Luis A. ;
Di Liberto, Giovanni ;
Pacchioni, Gianfranco .
JOURNAL OF CATALYSIS, 2023, 417 :351-359
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Recent Progress in Non-Precious Catalysts for Metal-Air Batteries [J].
Cao, Ruiguo ;
Lee, Jang-Soo ;
Liu, Meilin ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :816-829
[5]   Hydrogen peroxide electrochemical synthesis on hybrid double-atom (Pd-Cu) doped N vacancy g-C3N4: a novel design strategy for electrocatalyst screening [J].
Cao, Yongyong ;
Zhao, Chenxia ;
Fang, Qiaojun ;
Zhong, Xing ;
Zhuang, Guilin ;
Deng, Shengwei ;
Wei, Zhongzhe ;
Yao, Zihao ;
Wang, Jianguo .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (05) :2672-2683
[6]   In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction [J].
Casalongue, Hernan G. Sanchez ;
Ng, May Ling ;
Kaya, Sarp ;
Friebel, Daniel ;
Ogasawara, Hirohito ;
Nilsson, Anders .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (28) :7169-7172
[7]   Promoting Electrochemical CO2 Reduction via Boosting Activation of Adsorbed Intermediates on Iron Single-Atom Catalyst [J].
Chen, Jiayi ;
Wang, Tingting ;
Wang, Xinyue ;
Yang, Bin ;
Sang, Xiahan ;
Zheng, Sixing ;
Yao, Siyu ;
Li, Zhongjian ;
Zhang, Qinghua ;
Lei, Lecheng ;
Xu, Jiang ;
Dai, Liming ;
Hou, Yang .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (21)
[8]   Superoxo and Peroxo Complexes on Single-Atom Catalysts: Impact on the Oxygen Evolution Reaction [J].
Cipriano, Luis A. ;
Di Liberto, Giovanni ;
Pacchioni, Gianfranco .
ACS CATALYSIS, 2022, 12 (19) :11682-11691
[9]   Single Atom Catalysts: What Matters Most, the Active Site or The Surrounding? [J].
Di Liberto, Giovanni ;
Cipriano, Luis A. ;
Pacchioni, Gianfranco .
CHEMCATCHEM, 2022, 14 (19)
[10]   Role of Dihydride and Dihydrogen Complexes in Hydrogen Evolution Reaction on Single-Atom Catalysts [J].
Di Liberto, Giovanni ;
Cipriano, Luis A. ;
Pacchioni, Gianfranco .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (48) :20431-20441