Nonequilibrium Self-Assembly Time Forecasting by the Stochastic Landscape Method

被引:5
|
作者
Faran, Michael [1 ]
Bisker, Gili [1 ,2 ,3 ]
机构
[1] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Ctr Phys & Chem Living Syst, Ctr Nanosci & Nanotechnol, IL-6997801 Tel Aviv, Israel
[3] Tel Aviv Univ, Ctr Light Matter Interact, IL-6997801 Tel Aviv, Israel
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2023年 / 127卷 / 27期
基金
欧洲研究理事会;
关键词
DYNAMIC PATHWAYS; ORGANIZATION; EQUILIBRIUM; FRAMEWORK; DELIVERY; SYSTEMS; HSP70;
D O I
10.1021/acs.jpcb.3c01376
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Many biological systems rely on the ability to self-assembletargetstructures from different molecular building blocks using nonequilibriumdrives, stemming, for example, from chemical potential gradients.The complex interactions between the different components give riseto a rugged energy landscape with a plethora of local minima on thedynamic pathway to the target assembly. Exploring a toy physical modelof multicomponents nonequilibrium self-assembly, we demonstrate thata segmented description of the system dynamics can be used to providepredictions of the first assembly times. We show that for a wide rangeof values of the nonequilibrium drive, a log-normal distribution emergesfor the first assembly time statistics. Based on data segmentationby a Bayesian estimator of abrupt changes (BEAST), we further presenta general data-based algorithmic scheme, namely, the stochastic landscapemethod (SLM), for assembly time predictions. We demonstrate that thisscheme can be implemented for the first assembly time forecast duringa nonequilibrium self-assembly process, with improved prediction powercompared to a nai''ve guess based on the mean remaining timeto the first assembly. Our results can be used to establish a generalquantitative framework for nonequilibrium systems and to improve controlprotocols of nonequilibrium self-assembly processes.
引用
收藏
页码:6113 / 6124
页数:12
相关论文
共 50 条
  • [31] Nonequilibrium Self-Assembly of Microtubules Through Stepwise Sequential Interactions of DNA
    Keya, Jakia Jannat
    Akter, Mousumi
    Yamasaki, Yuta
    Kageyama, Yoshiyuki
    Sada, Kazuki
    Kuzuya, Akinori
    Kakugo, Akira
    SMALL, 2024,
  • [32] Nonequilibrium Self-Assembly Dynamics of Icosahedral Viral Capsids Packaging Genome
    Chevreuil, Maelenn
    Law-Hine, Didier
    Chen, Jingzhi
    Bressanelli, Stephane
    Combet, Sophie
    Constantin, Doru
    Degrouard, Jeril
    Moller, Johannes
    Zeghal, Mehdi
    Tresset, Guillaume
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 60A - 60A
  • [33] Nonequilibrium self-assembly of long chains of polar molecules in superfluid helium
    Nauta, K
    Miller, RE
    SCIENCE, 1999, 283 (5409) : 1895 - 1897
  • [34] Exploring the tubular self-assembly landscape of dinucleobase amphiphiles in water
    Chamorro, Paula B.
    Aparicio, Fatima
    Chamorro, Raquel
    Bilbao, Nerea
    Casado, Santiago
    Gonzalez-Rodriguez, David
    ORGANIC CHEMISTRY FRONTIERS, 2021, 8 (04) : 686 - 696
  • [35] Experimental self-assembly: the many facets of self-assembly
    Tomalia, DA
    Wang, ZG
    Tirrell, M
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 1999, 4 (01) : 3 - 5
  • [36] New forecasting method for stochastic time series
    Xitong Gongcheng Lilum yu Shijian, 1 (36-43):
  • [37] Nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging genome or polyelectrolyte
    Maelenn Chevreuil
    Didier Law-Hine
    Jingzhi Chen
    Stéphane Bressanelli
    Sophie Combet
    Doru Constantin
    Jéril Degrouard
    Johannes Möller
    Mehdi Zeghal
    Guillaume Tresset
    Nature Communications, 9
  • [38] How morphology affects self-assembly in a stochastic modular robot
    Miyashita, Shuhei
    Kessler, Marco
    Lungarella, Max
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 3533 - 3538
  • [39] Probabilistic Modeling of Programmable Stochastic Self-Assembly of Robotic Modules
    Haghighat, Bahar
    Thandiackal, Robin
    Mordig, Maximilian
    Martinoli, Alcherio
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 4656 - 4663
  • [40] Stochastic model of self-assembly of cell-laden hydrogels
    Shi, Zhenyu
    Chen, Nan
    Du, Yanan
    Khademhosseini, Ali
    Alber, Mark
    PHYSICAL REVIEW E, 2009, 80 (06):