Nonequilibrium Self-Assembly Time Forecasting by the Stochastic Landscape Method

被引:5
|
作者
Faran, Michael [1 ]
Bisker, Gili [1 ,2 ,3 ]
机构
[1] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Ctr Phys & Chem Living Syst, Ctr Nanosci & Nanotechnol, IL-6997801 Tel Aviv, Israel
[3] Tel Aviv Univ, Ctr Light Matter Interact, IL-6997801 Tel Aviv, Israel
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2023年 / 127卷 / 27期
基金
欧洲研究理事会;
关键词
DYNAMIC PATHWAYS; ORGANIZATION; EQUILIBRIUM; FRAMEWORK; DELIVERY; SYSTEMS; HSP70;
D O I
10.1021/acs.jpcb.3c01376
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Many biological systems rely on the ability to self-assembletargetstructures from different molecular building blocks using nonequilibriumdrives, stemming, for example, from chemical potential gradients.The complex interactions between the different components give riseto a rugged energy landscape with a plethora of local minima on thedynamic pathway to the target assembly. Exploring a toy physical modelof multicomponents nonequilibrium self-assembly, we demonstrate thata segmented description of the system dynamics can be used to providepredictions of the first assembly times. We show that for a wide rangeof values of the nonequilibrium drive, a log-normal distribution emergesfor the first assembly time statistics. Based on data segmentationby a Bayesian estimator of abrupt changes (BEAST), we further presenta general data-based algorithmic scheme, namely, the stochastic landscapemethod (SLM), for assembly time predictions. We demonstrate that thisscheme can be implemented for the first assembly time forecast duringa nonequilibrium self-assembly process, with improved prediction powercompared to a nai''ve guess based on the mean remaining timeto the first assembly. Our results can be used to establish a generalquantitative framework for nonequilibrium systems and to improve controlprotocols of nonequilibrium self-assembly processes.
引用
收藏
页码:6113 / 6124
页数:12
相关论文
共 50 条
  • [21] NERDSS: A Nonequilibrium Simulator for Multibody Self-Assembly at the Cellular Scale
    Varga, Matthew J.
    Fu, Yiben
    Loggia, Spencer
    Yogurtcu, Osman N.
    Johnson, Margaret E.
    BIOPHYSICAL JOURNAL, 2020, 118 (12) : 3026 - 3040
  • [22] Nonequilibrium associative retrieval of multiple stored self-assembly targets
    Bisker, Gili
    England, Jeremy L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (45) : E10531 - E10538
  • [23] Nonequilibrium Self-Assembly of a Filament Coupled to ATP/GTP Hydrolysis
    Ranjith, Padinhateeri
    Lacoste, David
    Mallick, Kirone
    Joanny, Jean-Francois
    BIOPHYSICAL JOURNAL, 2009, 96 (06) : 2146 - 2159
  • [24] Devising Synthetic Reaction Cycles for Dissipative Nonequilibrium Self-Assembly
    Singh, Nishant
    Formon, Georges J. M.
    De Piccoli, Serena
    Hermans, Thomas M.
    ADVANCED MATERIALS, 2020, 32 (20)
  • [25] Cavity Optomechanics of Levitated Nanodumbbells: Nonequilibrium Phases and Self-Assembly
    Lechner, W.
    Habraken, S. J. M.
    Kiesel, N.
    Aspelmeyer, M.
    Zoller, P.
    PHYSICAL REVIEW LETTERS, 2013, 110 (14)
  • [26] A parameter estimation technique for stochastic self-assembly systems and its application to human papillomavirus self-assembly
    Kumar, M. Senthil
    Schwartz, Russell
    PHYSICAL BIOLOGY, 2010, 7 (04)
  • [27] PARALLELISM AND TIME IN HIERARCHICAL SELF-ASSEMBLY
    Chen, Ho-Lin
    Doty, David
    SIAM JOURNAL ON COMPUTING, 2017, 46 (02) : 661 - 709
  • [28] Self-assembly method for mechanical structure
    Satoshi Murata
    Haruhisa Kurokawa
    Kohji Tomita
    Shigeru Kokaji
    Artificial Life and Robotics, 1997, 1 (3) : 111 - 115
  • [30] A stochastic model of nanoparticle self-assembly on Cayley trees
    Mazilu, I.
    Schwen, E. M.
    Banks, W. E.
    Pope, B. K.
    Mazilu, D. A.
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2014), 2015, 574