Nonequilibrium Self-Assembly Time Forecasting by the Stochastic Landscape Method

被引:5
|
作者
Faran, Michael [1 ]
Bisker, Gili [1 ,2 ,3 ]
机构
[1] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Ctr Phys & Chem Living Syst, Ctr Nanosci & Nanotechnol, IL-6997801 Tel Aviv, Israel
[3] Tel Aviv Univ, Ctr Light Matter Interact, IL-6997801 Tel Aviv, Israel
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2023年 / 127卷 / 27期
基金
欧洲研究理事会;
关键词
DYNAMIC PATHWAYS; ORGANIZATION; EQUILIBRIUM; FRAMEWORK; DELIVERY; SYSTEMS; HSP70;
D O I
10.1021/acs.jpcb.3c01376
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Many biological systems rely on the ability to self-assembletargetstructures from different molecular building blocks using nonequilibriumdrives, stemming, for example, from chemical potential gradients.The complex interactions between the different components give riseto a rugged energy landscape with a plethora of local minima on thedynamic pathway to the target assembly. Exploring a toy physical modelof multicomponents nonequilibrium self-assembly, we demonstrate thata segmented description of the system dynamics can be used to providepredictions of the first assembly times. We show that for a wide rangeof values of the nonequilibrium drive, a log-normal distribution emergesfor the first assembly time statistics. Based on data segmentationby a Bayesian estimator of abrupt changes (BEAST), we further presenta general data-based algorithmic scheme, namely, the stochastic landscapemethod (SLM), for assembly time predictions. We demonstrate that thisscheme can be implemented for the first assembly time forecast duringa nonequilibrium self-assembly process, with improved prediction powercompared to a nai''ve guess based on the mean remaining timeto the first assembly. Our results can be used to establish a generalquantitative framework for nonequilibrium systems and to improve controlprotocols of nonequilibrium self-assembly processes.
引用
收藏
页码:6113 / 6124
页数:12
相关论文
共 50 条
  • [1] Self-Assembly at a Nonequilibrium Critical Point
    Whitelam, Stephen
    Hedges, Lester O.
    Schmit, Jeremy D.
    PHYSICAL REVIEW LETTERS, 2014, 112 (15)
  • [2] Stochastic lag time in nucleated linear self-assembly
    Tiwari, Nitin S.
    van der Schoot, Paul
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (23):
  • [3] Design principles for nonequilibrium self-assembly
    Nguyen, Michael
    Vaikuntanathan, Suriyanarayanan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (50) : 14231 - 14236
  • [4] A Stochastic Spatial Simulation Method for Self-Assembly Reactions
    Thomas, Marcus
    Schwartz, Russell S.
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 290A - 290A
  • [5] Phase field method for nonequilibrium dynamics of reversible self-assembly systems
    Freed, Karl F.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (13):
  • [6] Understanding Gelation as a Nonequilibrium Self-Assembly Process
    Arango-Restrepo, Andres
    Miguel Rubi, J.
    Barragan, Daniel
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (18): : 4937 - 4945
  • [7] Nonequilibrium thermodynamics of Janus particle self-assembly
    Torrenegra-Rico, J. D.
    Arango-Restrepo, A.
    Rubi, J. M.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (10):
  • [8] Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution
    Li, Bo
    Li, Songsong
    Zhou, Yuecheng
    Ardona, Herdeline Ann M.
    Valverde, Lawrence R.
    Wilson, William L.
    Tovar, John D.
    Schroeder, Charles M.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) : 3977 - 3984
  • [9] The Thermodynamic Landscape of Nanodisc Self-Assembly
    Camp, Tyler
    Sligar, Stephen G.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 243A - 243A
  • [10] STOCHASTIC CONTROL FOR SELF-ASSEMBLY OF XBOTS
    Ayanian, Nora
    White, Paul J.
    Halasz, Adam
    Yim, Mark
    Kumar, Vijay
    DETC 2008: 32ND ANNUAL MECHANISMS AND ROBOTICS CONFERENCE, VOL. 2, PTS A & B, 2009, : 1169 - 1176