HoloForkNet: Digital Hologram Reconstruction via Multibranch Neural Network

被引:7
作者
Svistunov, Andrey S. [1 ]
Rymov, Dmitry A. [1 ]
Starikov, Rostislav S. [1 ]
Cheremkhin, Pavel A. [1 ]
机构
[1] Natl Res Nucl Univ MEPhI, Inst Laser & Plasma Technol, Moscow Engn Phys Inst, Laser Phys Dept, Kashirskoe Shosse 31, Moscow 115409, Russia
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 10期
基金
俄罗斯科学基金会;
关键词
digital holography; neural network; image reconstruction; machine learning; spatial light modulator; computer-generated holography; 3D scene; deep learning; phase object; PHASE RETRIEVAL; MICROSCOPY;
D O I
10.3390/app13106125
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reconstruction of 3D scenes from digital holograms is an important task in different areas of science, such as biology, medicine, ecology, etc. A lot of parameters, such as the object's shape, number, position, rate and density, can be extracted. However, reconstruction of off-axis and especially inline holograms can be challenging due to the presence of optical noise, zero-order image and twin image. We have used a deep-multibranch neural network model, which we call HoloForkNet, to reconstruct different 2D sections of a 3D scene from a single inline hologram. This paper describes the proposed method and analyzes its performance for different types of objects. Both computer-generated and optically registered digital holograms with resolutions up to 2048 x 2048 pixels were reconstructed. High-quality image reconstruction for scenes consisting of up to eight planes was achieved. The average structural similarity index (SSIM) for 3D test scenes with eight object planes was 0.94. The HoloForkNet can be used to reconstruct 3D scenes consisting of micro- and macro-objects.
引用
收藏
页数:16
相关论文
共 75 条
  • [1] Roadmap on Digital Holography-Based Quantitative Phase Imaging
    Balasubramani, Vinoth
    Kujawinska, Malgorzata
    Allier, Cedric
    Anand, Vijayakumar
    Cheng, Chau-Jern
    Depeursinge, Christian
    Hai, Nathaniel
    Juodkazis, Saulius
    Kalkman, Jeroen
    Kus, Arkadiusz
    Lee, Moosung
    Magistretti, Pierre J.
    Marquet, Pierre
    Ng, Soon Hock
    Rosen, Joseph
    Park, Yong Keun
    Ziemczonok, Michal
    [J]. JOURNAL OF IMAGING, 2021, 7 (12)
  • [2] Reconstruction of in-line holograms: combining model-based and regularized inversion
    Berdeu, Anthony
    Flasseur, Olivier
    Mees, Loic
    Denis, Loic
    Momey, Fabien
    Olivier, Thomas
    Grosjean, Nathalie
    Fournier, Corinne
    [J]. OPTICS EXPRESS, 2019, 27 (10): : 14951 - 14968
  • [3] A Novel Elastomeric UNet for Medical Image Segmentation
    Cai, Sijing
    Wu, Yi
    Chen, Guannan
    [J]. FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [4] Fourier Imager Network (FIN): A deep neural network for hologram reconstruction with superior external generalization
    Chen, Hanlong
    Huang, Luzhe
    Liu, Tairan
    Ozcan, Aydogan
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2022, 11 (01)
  • [5] Cheremkhin Pavel, 2020, Procedia Computer Science, P440, DOI 10.1016/j.procs.2020.02.243
  • [6] An optical-digital method of noise suppression in digital holography
    Cheremkhin, Pavel A.
    Evtikhiev, Nikolay N.
    Kozlov, Alexander, V
    Krasnov, Vitaly V.
    Rodin, Vladislav G.
    Starikov, Rostislav S.
    [J]. JOURNAL OF OPTICS, 2022, 24 (11)
  • [7] Adaptive Digital Hologram Binarization Method Based on Local Thresholding, Block Division and Error Diffusion
    Cheremkhin, Pavel A.
    Kurbatova, Ekaterina A.
    Evtikhiev, Nikolay N.
    Krasnov, Vitaly V.
    Rodin, Vladislav G.
    Starikov, Rostislav S.
    [J]. JOURNAL OF IMAGING, 2022, 8 (02)
  • [8] Spatial filtering for zero-order and twin-image elimination in digital off-axis holography
    Cuche, E
    Marquet, P
    Depeursinge, C
    [J]. APPLIED OPTICS, 2000, 39 (23) : 4070 - 4075
  • [9] Fast autofocusing using tiny transformer networks for digital holographic microscopy
    Cuenat, Stephane
    Andreoli, Louis
    Andre, Antoine N.
    Sandoz, Patrick
    Laurent, Guillaume J.
    Couturier, Raphael
    Jacquot, Maxime
    [J]. OPTICS EXPRESS, 2022, 30 (14) : 24730 - 24746
  • [10] Inline hologram reconstruction with sparsity constraints
    Denis, Loic
    Lorenz, Dirk
    Thiebaut, Eric
    Fournier, Corinne
    Trede, Dennis
    [J]. OPTICS LETTERS, 2009, 34 (22) : 3475 - 3477