Additive manufacturing of graphene reinforced 316L stainless steel composites with tailored microstructure and mechanical properties

被引:15
作者
Das, Abhradeep [1 ,2 ]
Yadav, Vishal [1 ,2 ]
AlMangour, Bandar [3 ,4 ]
Prasad, Harish Chandra [1 ,2 ]
Sathish, N. [1 ,2 ]
Ashiq, Mohammad [1 ,2 ]
Srivastava, A. K. [1 ,2 ]
机构
[1] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[2] CSIR, Adv Mat & Proc Res Inst AMPRI, Bhopal 462026, India
[3] King Fahd Univ Petr & Minerals, Dept Mech Engn, Dhahran 31261, Saudi Arabia
[4] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Intelligent Mfg & Robot, Dhahran 31261, Saudi Arabia
关键词
Graphene; Austenitic stainless steel; Composites; Selective laser melting; Electron microscopy; Mechanical properties; CORROSION; POWDER; STRENGTH;
D O I
10.1016/j.matchemphys.2023.127826
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Since its inception, additive manufacturing has facilitated the processing of novel metal matrix composites that are challenging to fabricate using conventional manufacturing methods. The laser-based additive manufacturing process is a promising technology to fabricate uniformly dispersed graphene-reinforced stainless steel nano -composite. In this study, the effect of energy density modulation on densification, microstructure, and me-chanical properties of (316L) stainless steel reinforced with 0.2 wt% multi-layered graphene nanosheets was investigated. The highest relative densification (94.7% +/- 0.5) has been achieved at the volumetric energy density of 240 J/mm3. The formation of dislocation cells, inclusions and graphene-steel interaction have been identified in the microscopic analysis. Addition of graphene as reinforcement and nano-inclusions formed (in situ) during solidification promotes the pinning of dislocations around the cellular sub-grains. Alteration of volumetric energy density is an essential technique to tune the texture and microstructure of the additively manufactured samples. As the volumetric energy density increased to 240 J/mm3, the tensile strength achieved is around 1165 +/- 5 MPa.
引用
收藏
页数:14
相关论文
共 50 条
[1]   3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting [J].
Aboulkhair, Nesma T. ;
Simonelli, Marco ;
Parry, Luke ;
Ashcroft, Ian ;
Tuck, Christopher ;
Hague, Richard .
PROGRESS IN MATERIALS SCIENCE, 2019, 106
[2]   Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites [J].
AlMangour, Bandar ;
Grzesiak, Dariusz ;
Yang, Jenn-Ming .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 728 :424-435
[3]   Wettability of graphene [J].
Belyaeva, Liubov A. ;
Schneider, Gregory F. .
SURFACE SCIENCE REPORTS, 2020, 75 (02)
[4]   Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L [J].
Bertsch, K. M. ;
de Bellefon, G. Meric ;
Kuehl, B. ;
Thoma, D. J. .
ACTA MATERIALIA, 2020, 199 :19-33
[5]   Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites [J].
Boostani, A. Fadavi ;
Yazdani, S. ;
Mousavian, R. Taherzadeh ;
Tahamtan, S. ;
Khosroshahi, R. Azari ;
Wei, D. ;
Brabazon, D. ;
Xu, J. Z. ;
Zhang, X. M. ;
Jiang, Z. Y. .
MATERIALS & DESIGN, 2015, 88 :983-989
[6]   Study of volumetric energy density limitations on the IN718 mesostructure and microstructure in laser powder bed fusion process [J].
de Leon Nope, G., V ;
Perez-Andrade, L., I ;
Corona-Castuera, J. ;
Espinosa-Arbelaez, D. G. ;
Munoz-Saldana, J. ;
Alvarado-Orozco, J. M. .
JOURNAL OF MANUFACTURING PROCESSES, 2021, 64 :1261-1272
[7]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[8]   A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties [J].
Fayazfar, Haniyeh ;
Salarian, Mehrnaz ;
Rogalsky, Allan ;
Sarker, Dyuti ;
Russo, Paola ;
Paserin, Vlad ;
Toyserkani, Ehsan .
MATERIALS & DESIGN, 2018, 144 :98-128
[9]   Metal Additive Manufacturing: A Review [J].
Frazier, William E. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (06) :1917-1928
[10]  
Geim A. K., 2009, Nat. Mater, V6, P11, DOI DOI 10.1142/9789814287005_0002