A novel framework for joint sparse clustering and alignment of functional data

被引:3
|
作者
Vitelli, Valeria [1 ,2 ]
机构
[1] Univ Oslo, Inst Basic Med Sci, Oslo Ctr Biostat & Epidemiol, Dept Biostat, Oslo, Norway
[2] Univ Oslo, Oslo Ctr Biostat & Epidemiol, Dept Biostat, Sognsvannsveien 9, N-0372 Oslo, Norway
关键词
Functional data; clustering; sparse methods; misalignment; VARIABLE SELECTION; CLASSIFICATION; CURVES; MODELS;
D O I
10.1080/10485252.2023.2206499
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A novel framework for sparse functional clustering that also embeds an alignment step is here proposed. Sparse functional clustering entails estimating the parts of the curves' domains where their grouping structure shows the most. Misalignment is a well-known issue in functional data analysis, that can heavily affect functional clustering results if not properly handled. Therefore, we develop a sparse functional clustering procedure that accounts for the possible curve misalignment: the coherence of the functional measure used in the clustering step to the class where the warping functions are chosen is ensured, and the well-posedness of the sparse clustering problem is proved. A possible implementing algorithm is also proposed, that jointly performs all these tasks: clustering, alignment, and domain selection. The method is tested on simulated data in various realistic situations, and its application to the Berkeley Growth Study data and to the AneuRisk65 dataset is discussed.
引用
收藏
页码:182 / 211
页数:30
相关论文
共 50 条
  • [1] Sparse clustering of functional data
    Floriello, Davide
    Vitelli, Valeria
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 : 1 - 18
  • [2] Sparse and smooth functional data clustering
    Centofanti, Fabio
    Lepore, Antonio
    Palumbo, Biagio
    STATISTICAL PAPERS, 2024, 65 (02) : 795 - 825
  • [3] Structured Sparse Subspace Clustering: A Joint Affinity Learning and Subspace Clustering Framework
    Li, Chun-Guang
    You, Chong
    Vidal, Rene
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (06) : 2988 - 3001
  • [4] Interpretable sparse SIR for functional data
    Picheny, Victor
    Servien, Remi
    Villa-Vialaneix, Nathalie
    STATISTICS AND COMPUTING, 2019, 29 (02) : 255 - 267
  • [5] Bootstrap aggregated classification for sparse functional data
    Kim, Hyunsung
    Lim, Yaeji
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (08) : 2052 - 2063
  • [6] Pseudo-quantile functional data clustering
    Kim, Joonpyo
    Oh, Hee-Seok
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 178
  • [7] Functional clustering and identifying substructures of longitudinal data
    Chiou, Jeng-Min
    Li, Pai-Ling
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 679 - 699
  • [8] A joint sparse clustering and classification approach with applications to hospitalization prediction
    Xu, Tingting
    Brisimi, Theodora S.
    Wang, Taiyao
    Dai, Wuyang
    Paschalidis, Ioannis Ch.
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 4566 - 4571
  • [9] Functional data clustering: a survey
    Julien Jacques
    Cristian Preda
    Advances in Data Analysis and Classification, 2014, 8 : 231 - 255
  • [10] Joint modelling of paired sparse functional data using principal components
    Zhou, Lan
    Huang, Jianhua Z.
    Carroll, Raymond J.
    BIOMETRIKA, 2008, 95 (03) : 601 - 619