Finite-Time Contractive Control of Spacecraft Rendezvous System

被引:1
作者
Sheng, Jing [1 ]
Geng, Yunhai [1 ]
Li, Min [2 ]
Zhu, Baolong [3 ]
机构
[1] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China
[2] Beijing Inst Control Engn, Beijing 100190, Peoples R China
[3] Qilu Univ Technol, Sch Informat & Automat, Jinan 250353, Peoples R China
基金
中国国家自然科学基金;
关键词
finite-time contractive stability; state feedback control; spacecraft rendezvous system; cone complementary linearization; C-W equations; STABILIZATION; STABILITY; FEEDBACK; DESIGN;
D O I
10.3390/math11081871
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the problem of a finite-time contractive control method for a spacecraft rendezvous control system. The dynamic model of relative motion is formulated by the C-W equations. To improve the convergent performance of the spacecraft rendezvous control system, a finite-time contractive control law is introduced. Lyapunov's direct method is employed to obtain the existence condition of the desired controllers. The controller parameter can be obtained with the help of the cone complementary linearization algorithm. A numerical example verifies the effectiveness of the obtained theoretical results.
引用
收藏
页数:14
相关论文
共 28 条
[1]  
Amato F., 2014, Finite-Time Stability and Control
[2]   Finite-time stochastic contractive boundedness of Markovian jump systems subject to input constraints [J].
Cheng, Jun ;
Xiang, Huili ;
Wang, Hailing ;
Liu, Zhijun ;
Hou, Liyuan .
ISA TRANSACTIONS, 2016, 60 :74-81
[3]   TERMINAL GUIDANCE SYSTEM FOR SATELLITE RENDEZVOUS [J].
CLOHESSY, WH ;
WILTSHIRE, RS .
JOURNAL OF THE AEROSPACE SCIENCES, 1960, 27 (09) :653-&
[4]  
Dorato P., 1961, P IRE INT CONV REC 4, P83
[5]  
Dorato P., 1994, Linear-Quadratic Control: An Introduction
[6]   A cone complementarity linearization algorithm for static output-feedback and related problems [J].
ElGhaoui, L ;
Oustry, F ;
AitRami, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (08) :1171-1176
[7]   Finite-time control for autonomous rendezvous and docking under safe constraint [J].
Guo, Yong ;
Zhang, Dawei ;
Li, Ai-jun ;
Song, Shenmin ;
Wang, Chang-qing ;
Liu, Zongming .
AEROSPACE SCIENCE AND TECHNOLOGY, 2021, 109
[8]   Autonomous Control of the Large-Angle Spacecraft Maneuvers in a Non-Cooperative Mission [J].
Huang, Cheng ;
Cao, Tianzeng ;
Huang, Jinglin .
SENSORS, 2022, 22 (22)
[9]   Finite-time contractive boundedness of extracorporeal blood circulation process [J].
Joby, Maya ;
Santra, Srimanta ;
Anthoni, S. Marshal .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 388
[10]   Lyapunov conditions for finite-time stability of time-varying time-delay systems [J].
Li, Xiaodi ;
Yang, Xueyan ;
Song, Shiji .
AUTOMATICA, 2019, 103 :135-140