Transfer learning-based ensemble convolutional neural network for accelerated diagnosis of foot fractures

被引:8
|
作者
Kim, Taekyeong [1 ]
Goh, Tae Sik [2 ]
Lee, Jung Sub [2 ]
Lee, Ji Hyun [3 ]
Kim, Hayeol [1 ]
Jung, Im Doo [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Mech Engn, Ulsan 44919, South Korea
[2] Pusan Natl Univ, Pusan Natl Univ Hosp, Biomed Res Inst, Dept Orthopaed Surg,Sch Med, Busan 49241, South Korea
[3] Hlth Insurance Review & Assessment Serv, Wonju 26465, South Korea
基金
新加坡国家研究基金会;
关键词
Artificial intelligence; Convolutional neural network; Ensemble method; Fractures; X-ray radiography;
D O I
10.1007/s13246-023-01215-w
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The complex shape of the foot, consisting of 26 bones, variable ligaments, tendons, and muscles leads to misdiagnosis of foot fractures. Despite the introduction of artificial intelligence (AI) to diagnose fractures, the accuracy of foot fracture diagnosis is lower than that of conventional methods. We developed an AI assistant system that assists with consistent diagnosis and helps interns or non-experts improve their diagnosis of foot fractures, and compared the effectiveness of the AI assistance on various groups with different proficiency. Contrast-limited adaptive histogram equalization was used to improve the visibility of original radiographs and data augmentation was applied to prevent overfitting. Preprocessed radiographs were fed to an ensemble model of a transfer learning-based convolutional neural network (CNN) that was developed for foot fracture detection with three models: InceptionResNetV2, MobilenetV1, and ResNet152V2. After training the model, score class activation mapping was applied to visualize the fracture based on the model prediction. The prediction result was evaluated by the receiver operating characteristic (ROC) curve and its area under the curve (AUC), and the F1-Score. Regarding the test set, the ensemble model exhibited better classification ability (F1-Score: 0.837, AUC: 0.95, Accuracy: 86.1%) than other single models that showed an accuracy of 82.4%. With AI assistance for the orthopedic fellow, resident, intern, and student group, the accuracy of each group improved by 3.75%, 7.25%, 6.25%, and 7% respectively and diagnosis time was reduced by 21.9%, 14.7%, 24.4%, and 34.6% respectively.
引用
收藏
页码:265 / 277
页数:13
相关论文
共 50 条
  • [31] ECG BIOMETRICS METHOD BASED ON CONVOLUTIONAL NEURAL NETWORK AND TRANSFER LEARNING
    Zhang, Yefei
    Zhao, Zhidong
    Guo, Chunwei
    Huang, Jingzhou
    Xu, Kaida
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2019, : 18 - 24
  • [32] Study on automatic lithology identification based on convolutional neural network and deep transfer learning
    Li, Shiliang
    Dong, Yuelong
    Zhang, Zhanrong
    Lin, Chengyuan
    Liu, Huaji
    Wang, Yafei
    Bian, Youyan
    Xiong, Feng
    Zhang, Guohua
    DISCOVER APPLIED SCIENCES, 2024, 6 (06)
  • [33] Prediction of drug response in major depressive disorder using ensemble of transfer learning with convolutional neural network based on EEG
    Shahabi, Mohsen Sadat
    Shalbaf, Ahmad
    Maghsoudi, Arash
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (03) : 946 - 959
  • [34] Malphite: A Convolutional Neural Network and Ensemble Learning Based Protein Secondary Structure Predictor
    Li, Yang
    Shibuya, Tetsuo
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 1260 - 1266
  • [35] An Ensemble Transfer Learning Model for Brain Tumors Classification using Convolutional Neural Networks
    Sterniczuk, Bartosz
    Charytanowicz, Malgorzata
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2024, 18 (08) : 204 - 216
  • [36] A transfer convolutional neural network for fault diagnosis based on ResNet-50
    Long Wen
    Xinyu Li
    Liang Gao
    Neural Computing and Applications, 2020, 32 : 6111 - 6124
  • [37] Improved performance on tomato pest classification via transfer learning-based deep convolutional neural network with regularisation techniques
    Pattnaik, Gayatri
    Shrivastava, Vimal K.
    Parvathi, K.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2023, 26 (04) : 397 - 405
  • [38] Advanced Raman Spectroscopy Based on Transfer Learning by Using a Convolutional Neural Network for Personalized Colorectal Cancer Diagnosis
    Kalatzis, Dimitris
    Spyratou, Ellas
    Karnachoriti, Maria
    Kouri, Maria Anthi
    Orfanoudakis, Spyros
    Koufopoulos, Nektarios
    Pouliakis, Abraham
    Danias, Nikolaos
    Seimenis, Ioannis
    Kontos, Athanassios G.
    Efstathopoulos, Efstathios P.
    OPTICS, 2023, 4 (02): : 310 - 320
  • [39] Diagnosis of Alzheimer's Disease with Ensemble Learning Classifier and 3D Convolutional Neural Network
    Zhang, Peng
    Lin, Shukuan
    Qiao, Jianzhong
    Tu, Yue
    SENSORS, 2021, 21 (22)
  • [40] Deep transfer learning rolling bearing fault diagnosis method based on convolutional neural network feature fusion
    Yu, Di
    Fu, Haiyue
    Song, Yanchen
    Xie, Wenjian
    Xie, Zhijie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (01)