Transfer learning-based ensemble convolutional neural network for accelerated diagnosis of foot fractures

被引:8
|
作者
Kim, Taekyeong [1 ]
Goh, Tae Sik [2 ]
Lee, Jung Sub [2 ]
Lee, Ji Hyun [3 ]
Kim, Hayeol [1 ]
Jung, Im Doo [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Mech Engn, Ulsan 44919, South Korea
[2] Pusan Natl Univ, Pusan Natl Univ Hosp, Biomed Res Inst, Dept Orthopaed Surg,Sch Med, Busan 49241, South Korea
[3] Hlth Insurance Review & Assessment Serv, Wonju 26465, South Korea
基金
新加坡国家研究基金会;
关键词
Artificial intelligence; Convolutional neural network; Ensemble method; Fractures; X-ray radiography;
D O I
10.1007/s13246-023-01215-w
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The complex shape of the foot, consisting of 26 bones, variable ligaments, tendons, and muscles leads to misdiagnosis of foot fractures. Despite the introduction of artificial intelligence (AI) to diagnose fractures, the accuracy of foot fracture diagnosis is lower than that of conventional methods. We developed an AI assistant system that assists with consistent diagnosis and helps interns or non-experts improve their diagnosis of foot fractures, and compared the effectiveness of the AI assistance on various groups with different proficiency. Contrast-limited adaptive histogram equalization was used to improve the visibility of original radiographs and data augmentation was applied to prevent overfitting. Preprocessed radiographs were fed to an ensemble model of a transfer learning-based convolutional neural network (CNN) that was developed for foot fracture detection with three models: InceptionResNetV2, MobilenetV1, and ResNet152V2. After training the model, score class activation mapping was applied to visualize the fracture based on the model prediction. The prediction result was evaluated by the receiver operating characteristic (ROC) curve and its area under the curve (AUC), and the F1-Score. Regarding the test set, the ensemble model exhibited better classification ability (F1-Score: 0.837, AUC: 0.95, Accuracy: 86.1%) than other single models that showed an accuracy of 82.4%. With AI assistance for the orthopedic fellow, resident, intern, and student group, the accuracy of each group improved by 3.75%, 7.25%, 6.25%, and 7% respectively and diagnosis time was reduced by 21.9%, 14.7%, 24.4%, and 34.6% respectively.
引用
收藏
页码:265 / 277
页数:13
相关论文
共 50 条
  • [1] Transfer learning-based ensemble convolutional neural network for accelerated diagnosis of foot fractures
    Taekyeong Kim
    Tae Sik Goh
    Jung Sub Lee
    Ji Hyun Lee
    Hayeol Kim
    Im Doo Jung
    Physical and Engineering Sciences in Medicine, 2023, 46 : 265 - 277
  • [2] A negative correlation ensemble transfer learning method for fault diagnosis based on convolutional neural network
    Wen, Long
    Gao, Liang
    Dong, Yan
    Zhu, Zheng
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (05) : 3311 - 3330
  • [3] Transfer learning-based convolutional neural network image recognition method for plant leaves
    Zhao Y.
    Zheng Y.
    Shi H.
    Zhang L.
    Zheng, Yili (zhengyili@bjfu.edu.cn), 1600, North Atlantic University Union NAUN (14): : 56 - 62
  • [4] Rotating machinery fault diagnosis based on transfer learning and an improved convolutional neural network
    Jiang, Li
    Zheng, Chunpu
    Li, Yibing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [5] Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm
    Lee, Jae-Hong
    Kim, Do-Hyung
    Jeong, Seong-Nyum
    Choi, Seong-Ho
    JOURNAL OF DENTISTRY, 2018, 77 : 106 - 111
  • [6] A Transfer Learning-Based Deep Convolutional Neural Network for Detection of Fusarium Wilt in Banana Crops
    Yan, Kevin
    Shisher, Md Kamran Chowdhury
    Sun, Yin
    AGRIENGINEERING, 2023, 5 (04): : 2381 - 2394
  • [7] A transfer learning-based novel fusion convolutional neural network for breast cancer histology classification
    Xiangchun Yu
    Hechang Chen
    Miaomiao Liang
    Qing Xu
    Lifang He
    Multimedia Tools and Applications, 2022, 81 : 11949 - 11963
  • [8] A transfer learning-based novel fusion convolutional neural network for breast cancer histology classification
    Yu, Xiangchun
    Chen, Hechang
    Liang, Miaomiao
    Xu, Qing
    He, Lifang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (09) : 11949 - 11963
  • [9] Deep Convolutional Neural Network (Falcon) and transfer learning-based approach to detect malarial parasite
    Banerjee, Tathagat
    Jain, Aditya
    Sethuraman, Sibi Chakkaravarthy
    Satapathy, Suresh Chandra
    Karthikeyan, S.
    Jubilson, Ajith
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 13237 - 13251
  • [10] Mineral prospectivity prediction based on convolutional neural network and ensemble learning
    He, Hujun
    Zhu, Haolei
    Yang, Xingke
    Zhang, Weiwei
    Wang, Jinghao
    SCIENTIFIC REPORTS, 2024, 14 (01):