Concavity of solutions to semilinear equations in dimension two

被引:1
作者
Chau, Albert [1 ]
Weinkove, Ben [2 ]
机构
[1] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
基金
加拿大自然科学与工程研究理事会;
关键词
CONVEX SOLUTIONS; POWER CONCAVITY; LEVEL SETS;
D O I
10.1112/blms.12750
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Dirichlet problem for a class of semilinear equations on two- dimensional convex domains. We give a sufficient condition for the solution to be concave. Our condition uses comparison with ellipses, and is motivated by an idea of Kosmodem'yanskii. We also prove a result on propagation of concavity of solutions from the boundary, which holds in all dimensions.
引用
收藏
页码:706 / 716
页数:11
相关论文
共 20 条