Experimental and Crystal Plasticity Finite Element Study of the Deformation Behavior of High-Mn Steel Micropillars

被引:3
作者
Ha, Sangyul [1 ]
Kayani, Saif Haider [2 ,3 ]
Lee, Kyungjun [4 ]
Park, Sangeun [3 ]
Kim, Jung Gi [3 ]
Seol, Jae Bok [3 ]
Sung, Hyokyung [3 ,5 ]
机构
[1] SK Hynix, PKG S CAE, Icheon 17336, South Korea
[2] Gyeongsang Natl Univ, Ctr K Met, Dept Mat Engn & Convergence Technol, Jinju 52828, South Korea
[3] Korea Inst Mat Sci, Dept Aluminum, Chang Won 51508, South Korea
[4] Gachon Univ, Div Mech Smart Ind Engn, Mech Engn Major, Gyeonggi Do 13120, South Korea
[5] Kookmin Univ, Dept Mat Sci & Engn, Seoul 02707, South Korea
基金
新加坡国家研究基金会;
关键词
crystal orientation; crystal plasticity; finite element modeling; micropillar compression; DISLOCATION-DENSITY; MICRO-COMPRESSION; MARTENSITIC-TRANSFORMATION; MECHANICAL RESPONSE; HARDENING BEHAVIOR; ORIENTATION; STRENGTH; ALUMINUM; WORK; SIZE;
D O I
10.1002/srin.202200254
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Experimental and crystal plasticity finite element modeling approaches are used to predict the deformation behavior of micropillar in the 16Mn steel. The intrinsic (crystallographic orientation) and extrinsic (friction coefficient on the micropillar) factors are considered for both experiment and modeling on the deformation behavior of micropillars. When the friction coefficient is low, buckling is occurred by slipping on the top surface of the micropillar, while barreling is accommodated in the high friction coefficient condition. In the multiple slip system, the influence of the friction coefficient is negligible on the deformation behavior of the micropillar because slip initiation can occur at multiple points.
引用
收藏
页数:10
相关论文
共 65 条
[1]   Plastic anisotropy of electro-deposited pure α-iron with sharp crystallographic ⟨1 1 1⟩// texture in normal direction: Analysis by an explicitly dislocation-based crystal plasticity model [J].
Alankar, Alankar ;
Field, David P. ;
Raabe, Dierk .
INTERNATIONAL JOURNAL OF PLASTICITY, 2014, 52 :18-32
[2]   A dislocation-density-based 3D crystal plasticity model for pure aluminum [J].
Alankar, Alankar ;
Mastorakos, Ioannis N. ;
Field, David P. .
ACTA MATERIALIA, 2009, 57 (19) :5936-5946
[3]   DISLOCATION DYNAMICS .1. A PROPOSED METHODOLOGY FOR DEFORMATION MICROMECHANICS [J].
AMODEO, RJ ;
GHONIEM, NM .
PHYSICAL REVIEW B, 1990, 41 (10) :6958-6967
[4]  
[Anonymous], 2013, STANDARD TEST METHOD, DOI [10.1520/E0008, DOI 10.1520/E0008]
[5]   Modeling the evolution of crystallographic dislocation density in crystal plasticity [J].
Arsenlis, A ;
Parks, DM .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2002, 50 (09) :1979-2009
[6]   The role of twinning on microstructure and mechanical response of severely deformed single crystals of high-manganese austenitic steel [J].
Astafurova, E. G. ;
Tukeeva, M. S. ;
Zakharova, G. G. ;
Melnikov, E. V. ;
Maier, H. J. .
MATERIALS CHARACTERIZATION, 2011, 62 (06) :588-592
[7]   An analysis of the influence of the precipitate type on the mechanical behavior of Al - Cu alloys by means of micropillar compression tests [J].
Bellon, B. ;
Haouala, S. ;
LLorca, J. .
ACTA MATERIALIA, 2020, 194 :207-223
[8]   High strain rate micro-compression for crystal plasticity constitutive law parameters identification [J].
Breumier, S. ;
Sao-Joao, S. ;
Villani, A. ;
Levesque, M. ;
Kermouche, G. .
MATERIALS & DESIGN, 2020, 193
[9]   Strain hardening behavior of aluminum alloyed Hadfield steel single crystals [J].
Canadinc, D ;
Sehitoglu, H ;
Maier, HJ ;
Chumlyakov, YI .
ACTA MATERIALIA, 2005, 53 (06) :1831-1842
[10]   Current state of Fe-Mn-Al-C low density steels [J].
Chen, Shangping ;
Rana, Radhakanta ;
Haldar, Arunansu ;
Ray, Ranjit Kumar .
PROGRESS IN MATERIALS SCIENCE, 2017, 89 :345-391