Pine needle pyrolysis by thermogravimetry: comparison between kinetic analysis and artificial neural network

被引:3
作者
Zhu, Hong [1 ,2 ]
Liu, Naian [1 ,2 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230027, Anhui, Peoples R China
[2] Univ Sci & Technol China, MEM Key Lab Forest Fire Monitoring & Warning, Hefei 230027, Anhui, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Pine needle; Pyrolysis; Kinetic analysis; Artificial neural network; Optimization calculation; BIOMASS; DEGRADATION; PREDICTION; DECOMPOSITION; PARAMETERS; MODEL;
D O I
10.1007/s10973-024-12930-1
中图分类号
O414.1 [热力学];
学科分类号
摘要
The pine needle (PN) pyrolysis is investigated by thermogravimetry (TG) under nitrogen. Six kinetic models and 19 artificial neural networks (ANN) are compared based on the number of adjustable parameters. A 5-step kinetic model, assuming parallel reactions of moisture, extractives, hemicellulose, cellulose, and lignin, is proposed for PN pyrolysis. The ANN-2-4 (the first hidden layer has two neurons, and the second hidden layer has four neurons) is the best ANN model to predict PN pyrolysis. Furthermore, two model-fitting methods, EA method and ETp method (Zhu and Liu in Thermochimica Acta 690:178686, 2020. https://doi.org/10.1016/j.tca.2020.178686), and two optimization algorithms, genetic algorithm and trust region reflective algorithm (TRRA), are applied for kinetic analysis. The Levenberg-Marquardt algorithm is adopted to optimize adjustable parameters for ANN model. Previous work pointed out that a simple optimization algorithm achieves faster calculation, but is not suitable for kinetic analysis of complex chemistry. However, the results show that the ETp method combined with TRRA (a simple optimization algorithm) performs better than other kinetic analysis methods for analyzing PN pyrolysis. This work is the first effort to estimate kinetic parameters by the ETp-TRRA method.
引用
收藏
页码:3215 / 3224
页数:10
相关论文
共 31 条
[1]   Pyrolysis kinetics of wildland vegetation using model-fitting methods [J].
Amini, Elham ;
Safdari, Mohammad-Saeed ;
Johnson, Nathan ;
Weise, David R. ;
Fletcher, Thomas H. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2021, 157
[2]   Pyrolysis kinetics of live and dead wildland vegetation from the Southern United States [J].
Amini, Elham ;
Safdari, Mohammad-Saeed ;
Weise, David R. ;
Fletcher, Thomas H. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2019, 142
[3]   Pyrolysis characteristics, artificial neural network modeling and environmental impact of coal gangue and biomass by TG-FTIR [J].
Bi, Haobo ;
Wang, Chengxin ;
Lin, Qizhao ;
Jiang, Xuedan ;
Jiang, Chunlong ;
Bao, Lin .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 751
[4]   Thermodynamics, kinetics, gas emissions and artificial neural network modeling of co-pyrolysis of sewage sludge and peanut shell [J].
Bi, Haobo ;
Wang, Chengxin ;
Jiang, Xuedan ;
Jiang, Chunlong ;
Bao, Lin ;
Lin, Qizhao .
FUEL, 2021, 284
[5]   Multi-scale experimental investigations of the thermal degradation of pine needles [J].
Fateh, T. ;
Richard, F. ;
Zaida, J. ;
Rogaume, T. ;
Joseph, P. .
FIRE AND MATERIALS, 2017, 41 (06) :654-674
[6]   Comparative kinetic study of automotive polyurethane degradation in non-isothermal and isothermal conditions using artificial neural network [J].
Ferreira, Barbara D. de L. ;
Araujo, Natalia R. S. ;
Ligorio, Raphael F. ;
Pujatti, Fabricio J. P. ;
Yoshida, Maria Irene ;
Sebastiao, Rita C. O. .
THERMOCHIMICA ACTA, 2018, 666 :116-123
[7]   Friedman and n-reaction order methods applied to pine needles and polyurethane thermal decompositions [J].
Font, R. ;
Garrido, M. A. .
THERMOCHIMICA ACTA, 2018, 660 :124-133
[8]   Kinetics of pyrolysis and combustion of pine needles and cones [J].
Font, R. ;
Conesa, J. A. ;
Molto, J. ;
Munoz, M. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2009, 85 (1-2) :276-286
[9]   A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion [J].
Heidari, Mohammad ;
Dutta, Animesh ;
Acharya, Bishnu ;
Mahmud, Shohel .
JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (06) :1779-1799
[10]   Combustion chemistry and decomposition kinetics of forest fuels [J].
Korobeinichev, Oleg P. ;
Paletsky, Alexander A. ;
Gonchikzhapov, Munko B. ;
Shundrina, Inna K. ;
Chen, Haixiang ;
Liu, Naian .
9TH ASIA-OCEANIA SYMPOSIUM ON FIRE SCIENCE AND TECHNOLOGY, 2013, 62 :182-193