DBSTGNN-Att: Dual Branch Spatio-Temporal Graph Neural Network with an Attention Mechanism for Cellular Network Traffic Prediction

被引:2
|
作者
Cai, Zengyu [1 ]
Tan, Chunchen [1 ]
Zhang, Jianwei [2 ,3 ]
Zhu, Liang [1 ]
Feng, Yuan [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Comp Sci & Technol, Zhengzhou 450000, Peoples R China
[2] Zhengzhou Univ Light Ind, Sch Software Engn, Zhengzhou 450000, Peoples R China
[3] ZZULI Res Inst Ind Technol, Zhengzhou 450001, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 05期
基金
中国国家自然科学基金;
关键词
cellular network traffic prediction; deep learning; graph neural network; multi-modal feature fusion; attention mechanism; FUSION; GCN;
D O I
10.3390/app14052173
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As network technology continues to develop, the popularity of various intelligent terminals has accelerated, leading to a rapid growth in the scale of wireless network traffic. This growth has resulted in significant pressure on resource consumption and network security maintenance. The objective of this paper is to enhance the prediction accuracy of cellular network traffic in order to provide reliable support for the subsequent base station sleep control or the identification of malicious traffic. To achieve this target, a cellular network traffic prediction method based on multi-modal data feature fusion is proposed. Firstly, an attributed K-nearest node (KNN) graph is constructed based on the similarity of data features, and the fused high-dimensional features are incorporated into the graph to provide more information for the model. Subsequently, a dual branch spatio-temporal graph neural network with an attention mechanism (DBSTGNN-Att) is designed for cellular network traffic prediction. Extensive experiments conducted on real-world datasets demonstrate that the proposed method outperforms baseline models, such as temporal graph convolutional networks (T-GCNs) and spatial-temporal self-attention graph convolutional networks (STA-GCNs) with lower mean absolute error (MAE) values of 6.94% and 2.11%, respectively. Additionally, the ablation experimental results show that the MAE of multi-modal feature fusion using the attributed KNN graph is 8.54% lower compared to that of the traditional undirected graphs.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction with Navigation Data
    Dai, Rui
    Xu, Shenkun
    Gu, Qian
    Ji, Chenguang
    Liu, Kaikui
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3074 - 3082
  • [32] Spatio-Temporal Identity Multi-Graph Convolutional Network for Traffic Prediction in the Metaverse
    Nan, Haihan
    Li, Ruidong
    Zhu, Xiaoyan
    Ma, Jianfeng
    Xue, Kaiping
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2024, 42 (03) : 669 - 679
  • [33] Spatio-Temporal Fusion Attention: A Novel Approach for Remaining Useful Life Prediction Based on Graph Neural Network
    Kong, Ziqian
    Jin, Xiaohang
    Xu, Zhengguo
    Zhang, Bin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [34] Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok: An Application of a Continuous Convolutional Neural Network
    Promsawat, Pongsakon
    Sae-dan, Weerapan
    Kaewsuwan, Marisa
    Sudsutad, Weerawat
    Aphithana, Aphirak
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2025, 142 (01): : 579 - 607
  • [35] Network Traffic Prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Lin, Junda
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [36] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243
  • [37] Spatio-temporal envolutional graph neural network for traffic flow prediction in UAV-based urban traffic monitoring system
    Ma, Wenming
    Chu, Zihao
    Chen, Hao
    Li, Mingqi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [38] A Spatio-Temporal Graph Convolutional Network for Air Quality Prediction
    Li, Pengfei
    Zhang, Tong
    Jin, Yantao
    SUSTAINABILITY, 2023, 15 (09)
  • [39] A traffic speed prediction algorithm for dynamic spatio-temporal graph convolutional networks based on attention mechanism
    Chen, Hongwei
    Han, Hui
    Chen, Yifan
    Chen, Zexi
    Gao, Rong
    Li, Xia
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [40] Spatio-Temporal Residual Graph Convolutional Network for Short-Term Traffic Flow Prediction
    Zhang, Qingyong
    Tan, Meifang
    Li, Changwu
    Xia, Huiwen
    Chang, Wanfeng
    Li, Minglong
    IEEE ACCESS, 2023, 11 : 84187 - 84199