DBSTGNN-Att: Dual Branch Spatio-Temporal Graph Neural Network with an Attention Mechanism for Cellular Network Traffic Prediction

被引:2
|
作者
Cai, Zengyu [1 ]
Tan, Chunchen [1 ]
Zhang, Jianwei [2 ,3 ]
Zhu, Liang [1 ]
Feng, Yuan [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Comp Sci & Technol, Zhengzhou 450000, Peoples R China
[2] Zhengzhou Univ Light Ind, Sch Software Engn, Zhengzhou 450000, Peoples R China
[3] ZZULI Res Inst Ind Technol, Zhengzhou 450001, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 05期
基金
中国国家自然科学基金;
关键词
cellular network traffic prediction; deep learning; graph neural network; multi-modal feature fusion; attention mechanism; FUSION; GCN;
D O I
10.3390/app14052173
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As network technology continues to develop, the popularity of various intelligent terminals has accelerated, leading to a rapid growth in the scale of wireless network traffic. This growth has resulted in significant pressure on resource consumption and network security maintenance. The objective of this paper is to enhance the prediction accuracy of cellular network traffic in order to provide reliable support for the subsequent base station sleep control or the identification of malicious traffic. To achieve this target, a cellular network traffic prediction method based on multi-modal data feature fusion is proposed. Firstly, an attributed K-nearest node (KNN) graph is constructed based on the similarity of data features, and the fused high-dimensional features are incorporated into the graph to provide more information for the model. Subsequently, a dual branch spatio-temporal graph neural network with an attention mechanism (DBSTGNN-Att) is designed for cellular network traffic prediction. Extensive experiments conducted on real-world datasets demonstrate that the proposed method outperforms baseline models, such as temporal graph convolutional networks (T-GCNs) and spatial-temporal self-attention graph convolutional networks (STA-GCNs) with lower mean absolute error (MAE) values of 6.94% and 2.11%, respectively. Additionally, the ablation experimental results show that the MAE of multi-modal feature fusion using the attributed KNN graph is 8.54% lower compared to that of the traditional undirected graphs.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] STAGNN: a spatial-temporal attention graph neural network for network traffic prediction
    Luo, Yonghua
    Ning, Qian
    Chen, Bingcai
    Zhou, Xinzhi
    Huang, Linyu
    INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2024, 30 (04) : 413 - 432
  • [22] Spatio-Temporal Modeling For Air Quality Prediction Based On Spectral Graph Convolutional Network And Attention Mechanism
    Song, Yiyi
    Mao, Hongyan
    Li, Hongwei
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [23] A Deep Spatio-temporal Attention-based Neural Network for Passenger Flow Prediction
    Cui, Yanling
    Jin, Beihong
    Zhang, Fusang
    Sun, Xingwu
    PROCEEDINGS OF THE 16TH EAI INTERNATIONAL CONFERENCE ON MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES (MOBIQUITOUS'19), 2019, : 20 - 30
  • [24] Spatio-Temporal Articulation & Coordination Co-attention Graph Network for human motion prediction
    Zhu, Shuang
    Chen, Jin
    Su, Yong
    SIGNAL PROCESSING, 2024, 223
  • [25] Graph Sequence Neural Network with an Attention Mechanism for Traffic Speed Prediction
    Lu, Zhilong
    Lv, Weifeng
    Xie, Zhipu
    Du, Bowen
    Xiong, Guixi
    Sun, Leilei
    Wang, Haiquan
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (02)
  • [26] Multivariate spatio-temporal modeling of drought prediction using graph neural network
    Yu, Jiaxin
    Ma, Tinghuai
    Jia, Li
    Rong, Huan
    Su, Yuming
    Wahab, Mohamed Magdy Abdel
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (01) : 107 - 124
  • [27] Adaptive Spatio-Temporal Convolutional Network for Traffic Prediction
    Zhang, Mingyang
    Li, Yong
    Sun, Funing
    Guo, Diansheng
    Hui, Pan
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1475 - 1480
  • [28] Spatio-Temporal Attention based Recurrent Neural Network for Next Location Prediction
    Altaf, Basmah
    Yu, Lu
    Zhang, Xiangliang
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 937 - 942
  • [29] Adaptive Hybrid Spatial-Temporal Graph Neural Network for Cellular Traffic Prediction
    Wang, Xing
    Yang, Kexin
    Wang, Zhendong
    Feng, Junlan
    Zhu, Lin
    Zhao, Juan
    Deng, Chao
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4026 - 4032
  • [30] TARGCN: temporal attention recurrent graph convolutional neural network for traffic prediction
    Yang, He
    Jiang, Cong
    Song, Yun
    Fan, Wendong
    Deng, Zelin
    Bai, Xinke
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (06) : 8179 - 8196