A Liouville-type theorem for cylindrical cones

被引:0
作者
Edelen, Nick [1 ]
Szekelyhidi, Gabor [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Northwestern Univ, Dept Math, Evanston, IL USA
关键词
STRONG MAXIMUM PRINCIPLE;
D O I
10.1002/cpa.22192
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that C0n subset of Rn+1$\mathbf {C}_0<^>n \subset \mathbb {R}<^>{n+1}$ is a smooth strictly minimizing and strictly stable minimal hypercone (such as the Simons cone), l >= 0$l \ge 0$, and M$M$ a complete embedded minimal hypersurface of Rn+1+l$\mathbb {R}<^>{n+1+l}$ lying to one side of C=C0xRl$\mathbf {C}= \mathbf {C}_0 \times \mathbb {R}<^>l$. If the density at infinity of M$M$ is less than twice the density of C$\mathbf {C}$, then we show that M=H(lambda)xRl$M = H(\lambda) \times \mathbb {R}<^>l$, where {H(lambda)}lambda$\lbrace H(\lambda)\rbrace _\lambda$ is the Hardt-Simon foliation of C0$\mathbf {C}_0$. This extends a result of L. Simon, where an additional smallness assumption is required for the normal vector of M$M$.
引用
收藏
页码:3557 / 3580
页数:24
相关论文
共 17 条
[1]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[2]  
Chodosh O., 2022, ARS INVEN ANAL, V2, P27
[3]  
Edelen N., 2021, ARCH RATION MECH AN
[4]   Regularity of minimal surfaces near quadratic cones [J].
Edelen, Nick ;
Spolaor, Luca .
ANNALS OF MATHEMATICS, 2023, 198 (03) :1013-1046
[5]  
HARDT R, 1985, J REINE ANGEW MATH, V362, P102
[6]  
Ilmanen T, 1996, CALC VAR PARTIAL DIF, V4, P443
[7]  
Li Y., 2022, MINIMAL HYPERSURFACE
[8]  
Simon L., 1994, COMMUN ANAL GEOM, V2, P1, DOI [10.4310/CAG.1994.v2.n1.a1, DOI 10.4310/CAG.1994.V2.N1.A1]
[9]  
SIMON L, 1983, P CTR MATH ANAL, V3
[10]  
Simon L., 2021, ARS INVEN ANAL, V5, P35