Retinal vessel segmentation based on multi-scale feature and style transfer

被引:1
|
作者
Zheng, Caixia [1 ,2 ]
Li, Huican [2 ]
Ge, Yingying [1 ]
He, Yanlin [2 ]
Yi, Yugen [3 ]
Zhu, Meili [1 ]
Sun, Hui [4 ]
Kong, Jun [2 ]
机构
[1] Jilin Animat Inst, Changchun 130013, Peoples R China
[2] Northeast Normal Univ, Coll Informat Sci & Technol, Changchun 130117, Peoples R China
[3] Jiangxi Normal Univ, Sch Software, Nanchang 330022, Peoples R China
[4] Changchun Humanities & Sci Coll, Sch Sci & Technol, Changchun 130117, Peoples R China
基金
中国国家自然科学基金;
关键词
retinal vessel segmentation; multi-scale feature; style transfer; pseudo-label learning; deep learning; NEURAL-NETWORK;
D O I
10.3934/mbe.2024003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Retinal vessel segmentation is very important for diagnosing and treating certain eye diseases. Recently, many deep learning-based retinal vessel segmentation methods have been proposed; however, there are still many shortcomings (e.g., they cannot obtain satisfactory results when dealing with cross-domain data or segmenting small blood vessels). To alleviate these problems and avoid overly complex models, we propose a novel network based on a multi-scale feature and style transfer (MSFST-NET) for retinal vessel segmentation. Specifically, we first construct a lightweight segmentation module named MSF-Net, which introduces the selective kernel (SK) module to increase the multi-scale feature extraction ability of the model to achieve improved small blood vessel segmentation. Then, to alleviate the problem of model performance degradation when segmenting cross-domain datasets, we propose a style transfer module and a pseudo-label learning strategy. The style transfer module is used to reduce the style difference between the source domain image and the target domain image to improve the segmentation performance for the target domain image. The pseudo-label learning strategy is designed to be combined with the style transfer module to further boost the generalization ability of the model. Moreover, we trained and tested our proposed MSFSTNET in experiments on the DRIVE and CHASE_DB1 datasets. The experimental results demonstrate that MSFST-NET can effectively improve the generalization ability of the model on cross-domain datasets and achieve improved retinal vessel segmentation results than other state-of-the-art methods.
引用
收藏
页码:49 / 74
页数:26
相关论文
共 50 条
  • [31] Unified Multi-scale Feature Abstraction for Medical Image Segmentation
    Fang, Xi
    Du, Bo
    Xu, Sheng
    Wood, Bradford J.
    Yan, Pingkun
    MEDICAL IMAGING 2020: IMAGE PROCESSING, 2021, 11313
  • [32] MIC-Net: multi-scale integrated context network for automatic retinal vessel segmentation in fundus image
    Wang, Jinke
    Zhou, Lubiao
    Yuan, Zhongzheng
    Wang, Haiying
    Shi, Changfa
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (04) : 6912 - 6931
  • [33] Weakly supervised semantic segmentation and optimization algorithm based on multi-scale feature model
    Xiong C.
    Zhi H.
    Tongxin Xuebao/Journal on Communications, 2019, 40 (01): : 163 - 171
  • [34] Res2Unet: A multi-scale channel attention network for retinal vessel segmentation
    Xuejian Li
    Jiaqi Ding
    Jijun Tang
    Fei Guo
    Neural Computing and Applications, 2022, 34 : 12001 - 12015
  • [35] Retinal Vessel Segmentation in Medical Diagnosis using Multi-scale Attention Generative Adversarial Networks
    Yang, Minqiang
    Ye, Yinru
    Ye, Kai
    Zhou, Wei
    Hu, Xiping
    Hu, Bin
    MOBILE NETWORKS & APPLICATIONS, 2023, 28 (04) : 1391 - 1401
  • [36] Attention to fine-grained information: hierarchical multi-scale network for retinal vessel segmentation
    Chengzhi Lyu
    Guoqing Hu
    Dan Wang
    The Visual Computer, 2022, 38 : 345 - 355
  • [37] Multi-Scale Feature Fusion for Interior Style Detection
    Yaguchi, Akitaka
    Ono, Keiko
    Makihara, Erina
    Ikushima, Naoya
    Nakayama, Tomomi
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [38] Res2Unet: A multi-scale channel attention network for retinal vessel segmentation
    Li, Xuejian
    Ding, Jiaqi
    Tang, Jijun
    Guo, Fei
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (14) : 12001 - 12015
  • [39] MS-CANet: Multi-Scale Subtraction Network with Coordinate Attention for Retinal Vessel Segmentation
    Jiang, Yun
    Yan, Wei
    Chen, Jie
    Qiao, Hao
    Zhang, Zequn
    Wang, Meiqi
    SYMMETRY-BASEL, 2023, 15 (04):
  • [40] Semantic Segmentation Method Based on Residual and Multi-Scale Feature Fusion
    Xiu, Chunbo
    Su, Huan
    Su, Xuemiao
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 2078 - 2083