Effects of experimental warming on soil enzyme activities in an alpine swamp meadow on the Qinghai-Tibetan Plateau

被引:5
|
作者
Bai, Wei [1 ]
Wang, Genxu [2 ]
Shang, Guanglie [1 ]
Xu, Lei [1 ]
Wang, Zilong [1 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730070, Peoples R China
[2] Sichuan Univ, Coll Water Resource & Hydropower, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China
关键词
Experimental warming; Soil enzymes; Soil carbon cycling; Biochemical process; Alpine swamp meadow; CONTRASTING FOREST ECOSYSTEMS; MICROBIAL BIOMASS; NITROGEN-FERTILIZATION; EXTRACELLULAR ENZYMES; HARDWOOD FOREST; ORGANIC-CARBON; CO2; EXCHANGE; SHORT-TERM; GHG FLUX; RESPONSES;
D O I
10.1016/j.pedobi.2023.150910
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Information about the response of soil enzymes to field warming in permafrost regions is scarce, and the potential mechanisms by which warming combined with biotic and abiotic factors affect soil enzyme activities in alpine grasslands remain unclear. A 3-year in situ experiment with two warming levels (2.7 degrees C and 5.3 degrees C) was con-ducted in an alpine swamp meadow to investigate the effects of experimental warming on 5 soil enzyme activities involved in soil carbon and nitrogen cycling, and the relationships between soil enzyme activities and soil variables related to physicochemical properties and nutrient levels were examined. Results showed that warming had obvious positive effects on soil moisture (SM), soil organic carbon, total nitrogen, and NH4+-N contents, especially in the surface soil layer. Soil NO3--N tended to decrease under moderate warming, while it significantly increased under high warming. Meanwhile, during the entire growing season, warming strongly enhanced invertase and amylase activities by 39.2-49.0% and 109.9-191.0%, respectively. In contrast, urease activities were significantly decreased by 36.8-55.7% in warming plots and there were no significant differences in catalase or cellulase activities among treatments during the whole growing season, while catalase activities in warming plots were significantly decreased by 2.6-4.0% in June. These inconsistent responses of soil enzyme activities to experimental warming could be partially explained by warming-induced changes in soil variables. Redundancy analysis showed that soil NO3--N and SM were the most important factors, which explained 29.8% and 19.7% of the variations in soil enzyme activities, respectively, suggesting that the warming-induced increase in SM could weaken the soil aeration status and enhance enzyme and substrate diffusion, strongly affecting soil nitrification and microbial enzyme production.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau
    Wang, Kun
    Zhang, Li
    Qiu, Yubao
    Ji, Lei
    Tian, Feng
    Wang, Cuizhen
    Wang, Zhiyong
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2015, 8 (01) : 56 - 73
  • [42] Effects of gravel on soil and vegetation properties of alpine grassland on the Qinghai-Tibetan plateau
    Qin, Yu
    Yi, Shuhua
    Chen, Jianjun
    Ren, Shilong
    Ding, Yongjian
    ECOLOGICAL ENGINEERING, 2015, 74 : 351 - 355
  • [43] Inclusion of photoinhibition in simulation of carbon dynamics of an alpine meadow on the Qinghai-Tibetan Plateau
    Zhang, Yongqiang
    Tang, Yanhong
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2005, 110 (G1)
  • [44] Soil Bacterial Community Responses to N Application and Warming in a Qinghai-Tibetan Plateau Alpine Steppe
    Mu, Zhiyuan
    Dong, Shikui
    Li, Yaoming
    Li, Shuai
    Shen, Hao
    Zhang, Jing
    Han, Yuhui
    Xu, Yudan
    Zhao, Zhenzhen
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2021, 9
  • [45] Effects of microtopography on soil microbial communities in alpine meadows on the Qinghai-Tibetan Plateau
    Li, Xinwei
    Li, Xilai
    Shi, Yan
    Zhao, Shoujing
    Liu, Jiale
    Lin, Yinyi
    Li, Chunli
    Zhang, Chunhui
    CATENA, 2024, 239
  • [46] Effects of drought and heat on the productivity and photosynthetic characteristics of alpine meadow plants on the Qinghai-Tibetan Plateau
    Ma Li
    Zhang Zhong-hua
    Yao Bu-qing
    Ma Zhen
    Huang Xiao-tao
    Zhou Bing-rong
    Xu Man-hou
    Guo Jing
    Zhou Hua-kun
    JOURNAL OF MOUNTAIN SCIENCE, 2021, 18 (08) : 2079 - 2093
  • [47] Effects of drought and heat on the productivity and photosynthetic characteristics of alpine meadow plants on the Qinghai-Tibetan Plateau
    Li Ma
    Zhong-hua Zhang
    Bu-qing Yao
    Zhen Ma
    Xiao-tao Huang
    Bing-rong Zhou
    Man-hou Xu
    Jing Guo
    Hua-kun Zhou
    Journal of Mountain Science, 2021, 18 : 2079 - 2093
  • [48] Effects of altitude on plant-species diversity and productivity in an alpine meadow, Qinghai-Tibetan plateau
    Wang, Chang Ting
    Long, Rui Jun
    Wang, Qi Ji
    Ding, Lu Ming
    Wang, Mei Ping
    AUSTRALIAN JOURNAL OF BOTANY, 2007, 55 (02) : 110 - 117
  • [49] Effects of drought and heat on the productivity and photosynthetic characteristics of alpine meadow plants on the Qinghai-Tibetan Plateau
    MA Li
    ZHANG Zhong-hua
    YAO Bu-qing
    MA Zhen
    HUANG Xiao-tao
    ZHOU Bing-rong
    XU Man-hou
    GUO Jing
    ZHOU Hua-kun
    Journal of Mountain Science, 2021, 18 (08) : 2079 - 2093
  • [50] Evapotranspiration and Its Energy Exchange in Alpine Meadow Ecosystem on the Qinghai-Tibetan Plateau
    Li Jie
    Jiang Sha
    Wang Bin
    Jiang Wei-wei
    Tang Yan-hong
    Du Ming-yuan
    Gu Song
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2013, 12 (08) : 1396 - 1401