Effects of experimental warming on soil enzyme activities in an alpine swamp meadow on the Qinghai-Tibetan Plateau

被引:5
|
作者
Bai, Wei [1 ]
Wang, Genxu [2 ]
Shang, Guanglie [1 ]
Xu, Lei [1 ]
Wang, Zilong [1 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730070, Peoples R China
[2] Sichuan Univ, Coll Water Resource & Hydropower, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China
关键词
Experimental warming; Soil enzymes; Soil carbon cycling; Biochemical process; Alpine swamp meadow; CONTRASTING FOREST ECOSYSTEMS; MICROBIAL BIOMASS; NITROGEN-FERTILIZATION; EXTRACELLULAR ENZYMES; HARDWOOD FOREST; ORGANIC-CARBON; CO2; EXCHANGE; SHORT-TERM; GHG FLUX; RESPONSES;
D O I
10.1016/j.pedobi.2023.150910
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Information about the response of soil enzymes to field warming in permafrost regions is scarce, and the potential mechanisms by which warming combined with biotic and abiotic factors affect soil enzyme activities in alpine grasslands remain unclear. A 3-year in situ experiment with two warming levels (2.7 degrees C and 5.3 degrees C) was con-ducted in an alpine swamp meadow to investigate the effects of experimental warming on 5 soil enzyme activities involved in soil carbon and nitrogen cycling, and the relationships between soil enzyme activities and soil variables related to physicochemical properties and nutrient levels were examined. Results showed that warming had obvious positive effects on soil moisture (SM), soil organic carbon, total nitrogen, and NH4+-N contents, especially in the surface soil layer. Soil NO3--N tended to decrease under moderate warming, while it significantly increased under high warming. Meanwhile, during the entire growing season, warming strongly enhanced invertase and amylase activities by 39.2-49.0% and 109.9-191.0%, respectively. In contrast, urease activities were significantly decreased by 36.8-55.7% in warming plots and there were no significant differences in catalase or cellulase activities among treatments during the whole growing season, while catalase activities in warming plots were significantly decreased by 2.6-4.0% in June. These inconsistent responses of soil enzyme activities to experimental warming could be partially explained by warming-induced changes in soil variables. Redundancy analysis showed that soil NO3--N and SM were the most important factors, which explained 29.8% and 19.7% of the variations in soil enzyme activities, respectively, suggesting that the warming-induced increase in SM could weaken the soil aeration status and enhance enzyme and substrate diffusion, strongly affecting soil nitrification and microbial enzyme production.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Effects of warming and clipping on plant and soil properties of an alpine meadow in the Qinghai-Tibetan Plateau, China
    Xu, ManHou
    Peng, Fei
    You, QuanGang
    Guo, Jian
    Tian, XiaFei
    Liu, Min
    Xue, Xian
    JOURNAL OF ARID LAND, 2015, 7 (02) : 189 - 204
  • [2] Effects of warming and clipping on plant and soil properties of an alpine meadow in the Qinghai-Tibetan Plateau, China
    Man Hou XU
    Fei PENG
    Quan Gang YOU
    Jian GUO
    Xia Fei TIAN
    Min LIU
    Xian XUE
    Journal of Arid Land, 2015, 7 (02) : 189 - 204
  • [3] Effects of warming and clipping on plant and soil properties of an alpine meadow in the Qinghai-Tibetan Plateau, China
    ManHou Xu
    Fei Peng
    QuanGang You
    Jian Guo
    XiaFei Tian
    Min Liu
    Xian Xue
    Journal of Arid Land, 2015, 7 : 189 - 204
  • [4] INITIAL EFFECTS OF EXPERIMENTAL WARMING ON TEMPERATURE, MOISTURE, AND VEGETATION CHARACTERISTICS IN AN ALPINE MEADOW ON THE QINGHAI-TIBETAN PLATEAU
    Xu, Man-Hou
    Peng, Fei
    You, Quan-Gang
    Guo, Jian
    Tian, Xia-Fei
    Liu, Min
    Xue, Xian
    POLISH JOURNAL OF ECOLOGY, 2014, 62 (03) : 493 - 509
  • [5] Effects of Patchiness on Soil Properties and Degradation of Alpine Meadow on the Qinghai-Tibetan Plateau
    Zhang, Wei
    Yi, Shuhua
    Qin, Yu
    Zhang, Jinglin
    LAND, 2024, 13 (10)
  • [6] Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai-Tibetan Plateau
    Wei, Junqi
    Li, Xiaoyan
    Liu, Lei
    Christensen, Torben Rojle
    Jiang, Zhiyun
    Ma, Yujun
    Wu, Xiuchen
    Yao, Hongyun
    Lopez-Blanco, Efren
    BIOGEOSCIENCES, 2022, 19 (03) : 861 - 875
  • [7] Effect of microtopography on soil respiration in an alpine meadow of the Qinghai-Tibetan plateau
    Li, Guoyong
    Mu, Junpeng
    Liu, Yinzhan
    Smith, Nicholas G.
    Sun, Shucun
    PLANT AND SOIL, 2017, 421 (1-2) : 147 - 155
  • [8] Effect of microtopography on soil respiration in an alpine meadow of the Qinghai-Tibetan plateau
    Guoyong Li
    Junpeng Mu
    Yinzhan Liu
    Nicholas G. Smith
    Shucun Sun
    Plant and Soil, 2017, 421 : 147 - 155
  • [9] Phenological changes offset the warming effects on biomass production in an alpine meadow on the Qinghai-Tibetan Plateau
    Ganjurjav, Hasbagan
    Gornish, Elise
    Hu, Guozheng
    Wu, Jianshuang
    Wan, Yunfan
    Li, Yue
    Gao, Qingzhu
    JOURNAL OF ECOLOGY, 2021, 109 (02) : 1014 - 1025
  • [10] Effects of Grassland Tourism on Alpine Meadow Community and Soil Properties in the Qinghai-Tibetan Plateau
    Feng, Ling
    Gan, Mianyu
    Tian, Fu-Ping
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2019, 28 (06): : 4147 - 4152