Sirtuin3 ensures the metabolic plasticity of neurotransmission during glucose deprivation

被引:5
作者
Tiwari, Anupama [1 ]
Hashemiaghdam, Arsalan [1 ]
Laramie, Marissa A. [1 ]
Maschi, Dario [1 ]
Haddad, Tristaan [1 ]
Stunault, Marion I. [1 ]
Bergom, Carmen [2 ,3 ]
Javaheri, Ali [4 ,6 ]
Klyachko, Vitaly [1 ]
Ashrafi, Ghazaleh [1 ,5 ]
机构
[1] Washington Univ, Dept Cell Biol & Physiol, Sch Med, St Louis, MO 63130 USA
[2] Washington Univ, Sch Med, Dept Radiat Oncol, St Louis, MO USA
[3] Washington Univ, Alvin J Siteman Canc Ctr, Sch Med, St Louis, MO USA
[4] Washington Univ, Dept Med, Div Cardiol, Sch Med, St Louis, MO USA
[5] Washington Univ, Needleman Ctr Neurometab & Axonal Therapeut, Sch Med, St Louis, MO 63130 USA
[6] John Cochran VA Hosp, St Louis, MO USA
基金
美国国家卫生研究院;
关键词
ACTIVATED PROTEIN-KINASE; SKELETAL-MUSCLE; BRAIN; CREB; TRANSCRIPTION; EXERCISE; PACKAGE; MOBILIZATION; FLEXIBILITY; TRANSPORT;
D O I
10.1083/jcb.202305048
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Neurons in the brain frequently experience glucose shortage and utilize oxidative fuels instead. Here, the authors demonstrate that glucose deprivation drives neuronal expression of the mitochondrial deacetylase sirtuin 3, which stimulates oxidative ATP synthesis in hippocampal nerve terminals to sustain neurotransmission. Neurotransmission is an energetically expensive process that underlies cognition. During intense electrical activity or dietary restrictions, the glucose level in the brain plummets, forcing neurons to utilize alternative fuels. However, the molecular mechanisms of neuronal metabolic plasticity remain poorly understood. Here, we demonstrate that glucose-deprived neurons activate the CREB and PGC1 alpha transcriptional program, which induces expression of the mitochondrial deacetylase Sirtuin 3 (Sirt3) both in vitro and in vivo. We show that Sirt3 localizes to axonal mitochondria and stimulates mitochondrial oxidative capacity in hippocampal nerve terminals. Sirt3 plays an essential role in sustaining synaptic transmission in the absence of glucose by providing metabolic support for the retrieval of synaptic vesicles after release. These results demonstrate that the transcriptional induction of Sirt3 facilitates the metabolic plasticity of synaptic transmission.
引用
收藏
页数:18
相关论文
共 81 条
[1]   Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway [J].
Akimoto, T ;
Pohnert, SC ;
Li, P ;
Zhang, M ;
Gumbs, C ;
Rosenberg, PB ;
Williams, RS ;
Yan, Z .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (20) :19587-19593
[2]   CREB and the CRTC co-activators: sensors for hormonal and metabolic signals [J].
Altarejos, Judith Y. ;
Montminy, Marc .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2011, 12 (03) :141-151
[3]   Synaptic vesicle retrieval time is a cell-wide rather than individual-synapse property [J].
Armbruster, Moritz ;
Ryan, Timothy A. .
NATURE NEUROSCIENCE, 2011, 14 (07) :824-826
[4]  
Ashrafi Ghazaleh, 2023, Dryad, DOI 10.5061/DRYAD.9P8CZ8WN3
[5]   Molecular Tuning of the Axonal Mitochondrial Ca2+ Uniporter Ensures Metabolic Flexibility of Neurotransmission [J].
Ashrafi, Ghazaleh ;
de Juan-Sanz, Jaime ;
Farrell, Ryan J. ;
Ryan, Timothy A. .
NEURON, 2020, 105 (04) :678-+
[6]   GLUT4 Mobilization Supports Energetic Demands of Active Synapses [J].
Ashrafi, Ghazaleh ;
Wu, Zhuhao ;
Farrell, Ryan J. ;
Ryan, Timothy A. .
NEURON, 2017, 93 (03) :606-+
[7]   PGC1α and mitochondrial metabolism - emerging concepts and relevance in ageing and neurodegenerative disorders [J].
Austin, Shane ;
St-Pierre, Julie .
JOURNAL OF CELL SCIENCE, 2012, 125 (21) :4963-4971
[8]  
Bakken T.E., 2020, bioRxiv, DOI DOI 10.1101/2020.03.31.016972
[9]   Calcium control of endocytic capacity at a CNS synapse [J].
Balaji, J. ;
Armbruster, Moritz ;
Ryan, Timothy A. .
JOURNAL OF NEUROSCIENCE, 2008, 28 (26) :6742-6749
[10]   GTPase Cycle of Dynamin Is Coupled to Membrane Squeeze and Release, Leading to Spontaneous Fission [J].
Bashkirov, Pavel V. ;
Akimov, Sergey A. ;
Evseev, Alexey I. ;
Schmid, Sandra L. ;
Zimmerberg, Joshua ;
Frolov, Vadim A. .
CELL, 2008, 135 (07) :1276-1286