Myricetin alleviates H2O2-induced senescence and apoptosis in rat nucleus pulposus-derived mesenchymal stem cells

被引:10
|
作者
Xie, Tian [1 ]
Pan, Ruijie [1 ]
Huang, Wenzhuo [1 ]
Dong, Sheng [1 ]
Wu, Shizhen [1 ]
Ye, Yuhui [1 ]
机构
[1] Wuhan Hosp Tradit Chinese Med, Dept Orthoped, Wuhan, Peoples R China
关键词
nucleus pulposus mesenchymal stem cells; myricetin; apoptosis; cell senescence; mitochondrial membrane potential; SIRT1; ROS; INTERVERTEBRAL DISC DEGENERATION; BIOLOGICAL BEHAVIOR; PREVALENCE; HYPOXIA; DEATH; ROS;
D O I
10.5603/FHC.a2023.0007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Introduction. Transplantation of mesenchymal stem cells (MSCs) has been reported to be a novel promising target for the regeneration of degenerated intervertebral discs (IVDs). However, the culture and survival limitations of MSCs remain challenging for MSC-based biological therapy. Myricetin, a common natural flavonoid, has been suggested to possess antiaging and antioxidant abilities. Therefore, we investigated the biological function of myricetin, and its related mechanisms involving cell senescence in intervertebral disc degeneration (IDD). Material and methods. The nucleus pulposus-derived mesenchymal stem cells (NPMSCs) were isolated from 4-month-old Sprague-Dawley (SD) rats and identified by examining surface markers and multipotent differentiation. Rat NPMSCs were cultured in an MSC culture medium or culture medium with different concentrations of H2O2. Myricetin or the combination of myricetin and EX527 were added to the culture medium to investigate the effects of myricetin. Cell viability was evaluated by cell counting kit-8 assays (CCK-8). The apoptosis rate was determined using Annexin V/PI dual staining. The mitochondrial membrane potential (MMP) was analyzed by a fluorescence microscope after JC-1 staining. The cell senescence was determined by SA-beta-Gal staining. MitoSOX green was used to selectively estimate mitochondrial reactive oxygen species (ROS) Apoptosis-associated proteins (Bax, Bcl2, and cleaved caspase-3), senescence markers (p16, p21, and p53), and SIRT1/PGC-1 alpha signaling pathway-related proteins (SIRT1 and PGC-1 alpha) were evaluated by western blotting. Results. The cells isolated from nucleus pulposus (NP) tissues met the criteria for MSCs. Myricetin showed no cytotoxicity up to a concentration of 100 mu M in rat NPMSCs cultured for 24 h. Myricetin pretreatment exhibited protective effects against H2O2-induced apoptosis. Myricetin could also alleviate H2O2-induced mitochondrial dysfunctions of increased mitochondrial ROS production and reduced MMP. Moreover, myricetin pretreatment delayed rat NPMSC senescence, as evidenced by decreased exppression of senescence indicators. Pretreatment of NPMSCs with 10 mu M EX527, a selective inhibitor of SIRT1, prior to exposure to 100 mu M H2O2, reversed the inhibitory effects of myricetin on cell apoptosis. Conclusions. Myricetin could affect the SIRT1/PGC-1 alpha pathway to protect mitochondrial functions and alleviate cell senescence in H2O2-treated NPMSCs.
引用
收藏
页码:98 / 108
页数:11
相关论文
共 50 条
  • [31] Mesenchymal Stem Cells Protect Nucleus Pulposus Cells from Compression-Induced Apoptosis by Inhibiting the Mitochondrial Pathway
    Chen, Sheng
    Zhao, Lei
    Deng, Xiangyu
    Shi, Deyao
    Wu, Fashuai
    Liang, Hang
    Huang, Donghua
    Shao, Zengwu
    STEM CELLS INTERNATIONAL, 2017, 2017
  • [32] Bone-derived mesenchymal stem cells alleviate compression-induced apoptosis of nucleus pulposus cells by N6 methyladenosine of autophagy
    Li, Gaocai
    Song, Yu
    Liao, Zhiwei
    Wang, Kun
    Luo, Rongjin
    Lu, Saideng
    Zhao, Kangcheng
    Feng, Xiaobo
    Liang, Hang
    Ma, Liang
    Wang, Bingjin
    Ke, Wencan
    Yin, Huipeng
    Zhan, Shengfeng
    Li, Shuai
    Wu, Xinghuo
    Zhang, Yukun
    Yang, Cao
    CELL DEATH & DISEASE, 2020, 11 (02)
  • [33] BMP7-Based Functionalized Self-Assembling Peptides Protect Nucleus Pulposus-Derived Stem Cells From Apoptosis In Vitro
    Li, Xiao-Chuan
    Wu, Yao-Hong
    Bai, Xue-Dong
    Ji, Wei
    Guo, Zi-Ming
    Wang, Chao-Feng
    He, Qing
    Ruan, Di-ke
    TISSUE ENGINEERING PART A, 2016, 22 (19-20) : 1218 - 1228
  • [34] Effects of Different Sources and Levels of Zinc on H2O2-Induced Apoptosis in IEC-6 Cells
    Mao, Lei
    Chen, Juncai
    Peng, Quanhui
    Zhou, Aiming
    Wang, Zhisheng
    BIOLOGICAL TRACE ELEMENT RESEARCH, 2013, 155 (01) : 132 - 141
  • [35] Tauroursodeoxycholic Acid Alleviates H2O2-Induced Oxidative Stress and Apoptosis via Suppressing Endoplasmic Reticulum Stress in Neonatal Rat Cardiomyocytes
    Zhang, Lin
    Wang, Yanmin
    DOSE-RESPONSE, 2018, 16 (03):
  • [36] Protective Effects of Phillyrin on H2O2-induced Oxidative Stress and Apoptosis in PC12 Cells
    Wei, Teng
    Tian, Wulin
    Yan, Haiyang
    Shao, Guoxi
    Xie, Guanghong
    CELLULAR AND MOLECULAR NEUROBIOLOGY, 2014, 34 (08) : 1165 - 1173
  • [37] Eupatilin prevents H2O2-induced oxidative stress and apoptosis in human retinal pigment epithelial cells
    Du, Lei
    Chen, Jia
    Xing, Yi-qiao
    BIOMEDICINE & PHARMACOTHERAPY, 2017, 85 : 136 - 140
  • [38] Leptin protects H9c2 rat cardiomyocytes from H2O2-induced apoptosis
    Eguchi, Megumi
    Liu, Yuantao
    Shin, Eyun-Jung
    Sweeney, Gary
    FEBS JOURNAL, 2008, 275 (12) : 3136 - 3144
  • [39] Synephrine Inhibits Oxidative Stress and H2O2-Induced Premature Senescence
    Abe, Hiroshi
    Indo, Hiroko P.
    Ito, Hiromu
    Majima, Hideyuki J.
    Tanaka, Tatsuro
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2025, : 2607 - 2622
  • [40] Sphingosine 1-phosphate attenuates H2O2-induced apoptosis in endothelial cells
    Moriue, Tetsuya
    Igarashi, Junsuke
    Yoneda, Kozo
    Nakai, Kozo
    Kosaka, Hiroaki
    Kubota, Yasuo
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 368 (04) : 852 - 857